void-packages/srcpkgs/sagemath/patches/12-fix_very_slow_doctest-fu...

98 lines
4.2 KiB
Diff

--- a/src/sage/rings/function_field/function_field.py
+++ b/src/sage/rings/function_field/function_field.py
@@ -111,22 +111,21 @@ Function fields over the algebraic field are supported::
sage: m = L.completion(pl, prec=5)
sage: m(x)
I + s + O(s^5)
- sage: m(y)
+ sage: m(y) # long time (4s)
-2*s + (-4 - I)*s^2 + (-15 - 4*I)*s^3 + (-75 - 23*I)*s^4 + (-413 - 154*I)*s^5 + O(s^6)
- sage: m(y)^2 + m(y) + m(x) + 1/m(x)
+ sage: m(y)^2 + m(y) + m(x) + 1/m(x) # long time (8s)
O(s^5)
TESTS::
sage: TestSuite(J).run()
- sage: TestSuite(K).run(max_runs=1024) # long time (5s)
- sage: TestSuite(L).run(max_runs=64) # long time (10s)
- sage: TestSuite(M).run(max_runs=32) # long time (30s)
- sage: TestSuite(N).run(max_runs=64, skip = '_test_derivation') # long time (8s)
- sage: TestSuite(O).run(max_runs=128, skip = '_test_derivation') # long time (8s)
-
+ sage: TestSuite(K).run(max_runs=256) # long time (10s)
+ sage: TestSuite(L).run(max_runs=8) # long time (25s)
+ sage: TestSuite(M).run(max_runs=8) # long time (35s)
+ sage: TestSuite(N).run(max_runs=8, skip = '_test_derivation') # long time (15s)
+ sage: TestSuite(O).run()
sage: TestSuite(R).run()
- sage: TestSuite(S).run() # long time (3s)
+ sage: TestSuite(S).run() # long time (4s)
Global function fields
----------------------
@@ -287,7 +286,7 @@ class FunctionField(Field):
TESTS::
sage: K.<x> = FunctionField(QQ)
- sage: TestSuite(K).run()
+ sage: TestSuite(K).run() # long time (3s)
"""
Field.__init__(self, base_field, names=names, category=category)
@@ -729,7 +728,7 @@ class FunctionField(Field):
EXAMPLES::
sage: K.<x> = FunctionField(QQ)
- sage: TestSuite(K).run() # indirect doctest
+ sage: TestSuite(K).run() # indirect doctest, long time (3s)
"""
tester = self._tester(**options)
S = tester.some_elements()
@@ -1209,7 +1208,7 @@ class FunctionField_polymod(FunctionField):
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L = K.extension(y^5 - x^3 - 3*x + x*y); L
Function field in y defined by y^5 + x*y - x^3 - 3*x
- sage: TestSuite(L).run() # long time
+ sage: TestSuite(L).run(max_runs=512) # long time (15s)
We can set the variable name, which doesn't have to be y::
@@ -2888,7 +2887,8 @@ class FunctionField_simple(FunctionField_polymod):
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: O = K.maximal_order()
sage: pls = [O.ideal(x-QQbar(sqrt(c))).place() for c in [-2, -1, 0, 1, 2]]
- sage: all(q.place_below() == p for p in pls for q in F.places_above(p))
+ sage: all(q.place_below() == p # long time (4s)
+ ....: for p in pls for q in F.places_above(p))
True
"""
R = self.base_field()
@@ -3091,7 +3091,7 @@ class FunctionField_global(FunctionField_simple):
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension((1 - x)*Y^7 - x^3)
- sage: L.gaps()
+ sage: L.gaps() # long time (6s)
[1, 2, 3]
or may define a trivial extension::
@@ -3111,7 +3111,7 @@ class FunctionField_global(FunctionField_simple):
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
- sage: TestSuite(L).run()
+ sage: TestSuite(L).run() # long time (7s)
"""
FunctionField_polymod.__init__(self, polynomial, names)
@@ -3807,7 +3807,7 @@ class RationalFunctionField(FunctionField):
sage: K.<t> = FunctionField(CC); K
Rational function field in t over Complex Field with 53 bits of precision
- sage: TestSuite(K).run()
+ sage: TestSuite(K).run() # long time (5s)
sage: FunctionField(QQ[I], 'alpha')
Rational function field in alpha over Number Field in I with defining polynomial x^2 + 1 with I = 1*I