1751 lines
87 KiB
Diff
1751 lines
87 KiB
Diff
diff --git a/build/pkgs/giac/patches/pari_2_15.patch b/build/pkgs/giac/patches/pari_2_15.patch
|
|
new file mode 100644
|
|
index 0000000000..d2900a5ffc
|
|
--- /dev/null
|
|
+++ b/build/pkgs/giac/patches/pari_2_15.patch
|
|
@@ -0,0 +1,21 @@
|
|
+ANYARG patch
|
|
+
|
|
+diff --git a/src/pari.cc b/src/pari.cc
|
|
+index 76ce8e1..50d08ab 100644
|
|
+--- a/src/pari.cc
|
|
++++ b/src/pari.cc
|
|
+@@ -40,6 +40,13 @@ using namespace std;
|
|
+
|
|
+ #ifdef HAVE_LIBPARI
|
|
+
|
|
++// Anyarg disappeared from PARI 2.15.0
|
|
++#ifdef __cplusplus
|
|
++# define ANYARG ...
|
|
++#else
|
|
++# define ANYARG
|
|
++#endif
|
|
++
|
|
+ #ifdef HAVE_PTHREAD_H
|
|
+ #include <pthread.h>
|
|
+ #endif
|
|
+
|
|
diff --git a/build/pkgs/pari/checksums.ini b/build/pkgs/pari/checksums.ini
|
|
index b736feed31..bafd0f36f4 100644
|
|
--- a/build/pkgs/pari/checksums.ini
|
|
+++ b/build/pkgs/pari/checksums.ini
|
|
@@ -1,5 +1,5 @@
|
|
tarball=pari-VERSION.tar.gz
|
|
-sha1=e01647aab7e96a8cb4922cf26a4f224337c6647f
|
|
-md5=922f740fcdf8630b30d63dc76b58f756
|
|
-cksum=297133525
|
|
+sha1=cba9b279f67d5efe2fbbccf3be6e9725f816cf07
|
|
+md5=76d430f1bea1b07fa2ad9712deeaa736
|
|
+cksum=1990743897
|
|
upstream_url=https://pari.math.u-bordeaux.fr/pub/pari/unix/pari-VERSION.tar.gz
|
|
diff --git a/build/pkgs/pari/package-version.txt b/build/pkgs/pari/package-version.txt
|
|
index a1a4224dd5..68e69e405e 100644
|
|
--- a/build/pkgs/pari/package-version.txt
|
|
+++ b/build/pkgs/pari/package-version.txt
|
|
@@ -1 +1 @@
|
|
-2.13.3
|
|
+2.15.0
|
|
diff --git a/src/doc/de/tutorial/tour_numtheory.rst b/src/doc/de/tutorial/tour_numtheory.rst
|
|
index a012234c99..e3149fe949 100644
|
|
--- a/src/doc/de/tutorial/tour_numtheory.rst
|
|
+++ b/src/doc/de/tutorial/tour_numtheory.rst
|
|
@@ -157,7 +157,7 @@ implementiert.
|
|
Univariate Quotient Polynomial Ring in a over Rational Field with modulus
|
|
x^3 + x^2 - 2*x + 8
|
|
sage: K.units()
|
|
- (3*a^2 + 13*a + 13,)
|
|
+ (-3*a^2 - 13*a - 13,)
|
|
sage: K.discriminant()
|
|
-503
|
|
sage: K.class_group()
|
|
diff --git a/src/doc/en/tutorial/tour_numtheory.rst b/src/doc/en/tutorial/tour_numtheory.rst
|
|
index 3064d100e2..075e0ac0ad 100644
|
|
--- a/src/doc/en/tutorial/tour_numtheory.rst
|
|
+++ b/src/doc/en/tutorial/tour_numtheory.rst
|
|
@@ -157,7 +157,7 @@ NumberField class.
|
|
Univariate Quotient Polynomial Ring in a over Rational Field with modulus
|
|
x^3 + x^2 - 2*x + 8
|
|
sage: K.units()
|
|
- (3*a^2 + 13*a + 13,)
|
|
+ (-3*a^2 - 13*a - 13,)
|
|
sage: K.discriminant()
|
|
-503
|
|
sage: K.class_group()
|
|
diff --git a/src/doc/es/tutorial/tour_numtheory.rst b/src/doc/es/tutorial/tour_numtheory.rst
|
|
index a1f7d1a87b..48e5376cfe 100644
|
|
--- a/src/doc/es/tutorial/tour_numtheory.rst
|
|
+++ b/src/doc/es/tutorial/tour_numtheory.rst
|
|
@@ -140,7 +140,7 @@ Varios métodos relacionados están implementados en la clase ``NumberField``::
|
|
Univariate Quotient Polynomial Ring in a over Rational Field with modulus
|
|
x^3 + x^2 - 2*x + 8
|
|
sage: K.units()
|
|
- (3*a^2 + 13*a + 13,)
|
|
+ (-3*a^2 - 13*a - 13,)
|
|
sage: K.discriminant()
|
|
-503
|
|
sage: K.class_group()
|
|
diff --git a/src/doc/fr/tutorial/tour_numtheory.rst b/src/doc/fr/tutorial/tour_numtheory.rst
|
|
index 871092f5fa..d1b2fee883 100644
|
|
--- a/src/doc/fr/tutorial/tour_numtheory.rst
|
|
+++ b/src/doc/fr/tutorial/tour_numtheory.rst
|
|
@@ -159,7 +159,7 @@ dans la classe NumberField.
|
|
Univariate Quotient Polynomial Ring in a over Rational Field with modulus
|
|
x^3 + x^2 - 2*x + 8
|
|
sage: K.units()
|
|
- (3*a^2 + 13*a + 13,)
|
|
+ (-3*a^2 - 13*a - 13,)
|
|
sage: K.discriminant()
|
|
-503
|
|
sage: K.class_group()
|
|
diff --git a/src/doc/ja/tutorial/tour_numtheory.rst b/src/doc/ja/tutorial/tour_numtheory.rst
|
|
index 47af68c862..4d4ed52d50 100644
|
|
--- a/src/doc/ja/tutorial/tour_numtheory.rst
|
|
+++ b/src/doc/ja/tutorial/tour_numtheory.rst
|
|
@@ -161,7 +161,7 @@ Sageには :math:`p` \-進数体も組込まれている.
|
|
Univariate Quotient Polynomial Ring in a over Rational Field with modulus
|
|
x^3 + x^2 - 2*x + 8
|
|
sage: K.units()
|
|
- (3*a^2 + 13*a + 13,)
|
|
+ (-3*a^2 - 13*a - 13,)
|
|
sage: K.discriminant()
|
|
-503
|
|
sage: K.class_group()
|
|
diff --git a/src/doc/pt/tutorial/tour_numtheory.rst b/src/doc/pt/tutorial/tour_numtheory.rst
|
|
index 6371b491ea..a3dc973a93 100644
|
|
--- a/src/doc/pt/tutorial/tour_numtheory.rst
|
|
+++ b/src/doc/pt/tutorial/tour_numtheory.rst
|
|
@@ -157,7 +157,7 @@ NumberField.
|
|
Univariate Quotient Polynomial Ring in a over Rational Field with modulus
|
|
x^3 + x^2 - 2*x + 8
|
|
sage: K.units()
|
|
- (3*a^2 + 13*a + 13,)
|
|
+ (-3*a^2 - 13*a - 13,)
|
|
sage: K.discriminant()
|
|
-503
|
|
sage: K.class_group()
|
|
diff --git a/src/doc/ru/tutorial/tour_numtheory.rst b/src/doc/ru/tutorial/tour_numtheory.rst
|
|
index 652abfbc99..a985d49fbd 100644
|
|
--- a/src/doc/ru/tutorial/tour_numtheory.rst
|
|
+++ b/src/doc/ru/tutorial/tour_numtheory.rst
|
|
@@ -150,7 +150,7 @@ Sage содержит стандартные функции теории чис
|
|
Univariate Quotient Polynomial Ring in a over Rational Field with modulus
|
|
x^3 + x^2 - 2*x + 8
|
|
sage: K.units()
|
|
- (3*a^2 + 13*a + 13,)
|
|
+ (-3*a^2 - 13*a - 13,)
|
|
sage: K.discriminant()
|
|
-503
|
|
sage: K.class_group()
|
|
diff --git a/src/sage/arith/misc.py b/src/sage/arith/misc.py
|
|
index e57076646f..fec75d07c1 100644
|
|
--- a/src/sage/arith/misc.py
|
|
+++ b/src/sage/arith/misc.py
|
|
@@ -1465,13 +1465,13 @@ def divisors(n):
|
|
|
|
sage: K.<a> = QuadraticField(7)
|
|
sage: divisors(K.ideal(7))
|
|
- [Fractional ideal (1), Fractional ideal (-a), Fractional ideal (7)]
|
|
+ [Fractional ideal (1), Fractional ideal (a), Fractional ideal (7)]
|
|
sage: divisors(K.ideal(3))
|
|
[Fractional ideal (1), Fractional ideal (3),
|
|
- Fractional ideal (-a + 2), Fractional ideal (-a - 2)]
|
|
+ Fractional ideal (a - 2), Fractional ideal (a + 2)]
|
|
sage: divisors(K.ideal(35))
|
|
- [Fractional ideal (1), Fractional ideal (5), Fractional ideal (-a),
|
|
- Fractional ideal (7), Fractional ideal (-5*a), Fractional ideal (35)]
|
|
+ [Fractional ideal (1), Fractional ideal (5), Fractional ideal (a),
|
|
+ Fractional ideal (7), Fractional ideal (5*a), Fractional ideal (35)]
|
|
|
|
TESTS::
|
|
|
|
@@ -2569,7 +2569,7 @@ def factor(n, proof=None, int_=False, algorithm='pari', verbose=0, **kwds):
|
|
|
|
sage: K.<i> = QuadraticField(-1)
|
|
sage: factor(122 - 454*i)
|
|
- (-3*i - 2) * (-i - 2)^3 * (i + 1)^3 * (i + 4)
|
|
+ (-i) * (-i - 2)^3 * (i + 1)^3 * (-2*i + 3) * (i + 4)
|
|
|
|
To access the data in a factorization::
|
|
|
|
diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py
|
|
index cdfc11a9e5..b6e1280d6e 100644
|
|
--- a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py
|
|
+++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py
|
|
@@ -7825,9 +7825,9 @@ class DynamicalSystem_projective_field(DynamicalSystem_projective,
|
|
sage: f = DynamicalSystem_projective([x^2 + QQbar(sqrt(3))*y^2, y^2, QQbar(sqrt(2))*z^2])
|
|
sage: f.reduce_base_field()
|
|
Dynamical System of Projective Space of dimension 2 over Number Field in a with
|
|
- defining polynomial y^4 - 4*y^2 + 1 with a = 1.931851652578137?
|
|
+ defining polynomial y^4 - 4*y^2 + 1 with a = -0.5176380902050415?
|
|
Defn: Defined on coordinates by sending (x : y : z) to
|
|
- (x^2 + (a^2 - 2)*y^2 : y^2 : (a^3 - 3*a)*z^2)
|
|
+ (x^2 + (-a^2 + 2)*y^2 : y^2 : (a^3 - 3*a)*z^2)
|
|
|
|
::
|
|
|
|
diff --git a/src/sage/ext_data/pari/simon/ellQ.gp b/src/sage/ext_data/pari/simon/ellQ.gp
|
|
index 420af8f6a2..65e8386779 100644
|
|
--- a/src/sage/ext_data/pari/simon/ellQ.gp
|
|
+++ b/src/sage/ext_data/pari/simon/ellQ.gp
|
|
@@ -40,7 +40,7 @@
|
|
gp > \r ellcommon.gp
|
|
gp > \r ellQ.gp
|
|
|
|
- The main function is ellrank(), which takes as an argument
|
|
+ The main function is ellQ_ellrank(), which takes as an argument
|
|
any elliptic curve in the form [a1,a2,a3,a4,a6]
|
|
the result is a vector [r,s,v], where
|
|
r is a lower bound for the rank,
|
|
@@ -50,7 +50,7 @@
|
|
Example:
|
|
|
|
gp > ell = [1,2,3,4,5];
|
|
- gp > ellrank(ell)
|
|
+ gp > ellQ_ellrank(ell)
|
|
%1 = [1, 1, [[1,2]]
|
|
In this example, the rank is exactly 1, and [1,2] has infinite order.
|
|
|
|
@@ -92,7 +92,7 @@
|
|
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
|
|
|
Explications succintes :
|
|
- La fonction ellrank() accepte toutes les courbes sous la forme
|
|
+ La fonction ellQ_ellrank() accepte toutes les courbes sous la forme
|
|
[a1,a2,a3,a4,a6]
|
|
Les coefficients peuvent etre entiers ou non.
|
|
L'algorithme utilise est celui de la 2-descente.
|
|
@@ -100,7 +100,7 @@
|
|
Il suffit de taper :
|
|
|
|
gp > ell = [a1,a2,a3,a4,a6];
|
|
- gp > ellrank(ell)
|
|
+ gp > ellQ_ellrank(ell)
|
|
|
|
Retourne un vecteur [r,s,v] ou
|
|
r est le rang probable (c'est toujours une minoration du rang),
|
|
@@ -110,7 +110,7 @@
|
|
Exemple :
|
|
|
|
gp > ell = [1,2,3,4,5];
|
|
- gp > ellrank(ell)
|
|
+ gp > ellQ_ellrank(ell)
|
|
%1 = [1, 1, [[1,2]]
|
|
Ici, le rang est exactement 1, et le point [1,2] est d'ordre infini.
|
|
|
|
@@ -1571,12 +1571,12 @@ if( DEBUGLEVEL_ell >= 4, print(" end of ell2descent_gen"));
|
|
print("rank(E/Q) >= ",m1)
|
|
);
|
|
}
|
|
-{ellrank(ell,help=[]) =
|
|
+{ellQ_ellrank(ell,help=[]) =
|
|
\\ Algorithm of 2-descent on the elliptic curve ell.
|
|
\\ help is a list of known points on ell.
|
|
my(urst,urst1,den,eqell,tors2,bnf,rang,time1);
|
|
|
|
-if( DEBUGLEVEL_ell >= 3, print(" starting ellrank"));
|
|
+if( DEBUGLEVEL_ell >= 3, print(" starting ellQ_ellrank"));
|
|
if( #ell < 13, ell = ellinit(ell));
|
|
|
|
\\ kill the coefficients a1 and a3
|
|
@@ -1630,7 +1630,7 @@ if( DEBUGLEVEL_ell >= 1, print(" Elliptic curve: Y^2 = ",eqell));
|
|
));
|
|
|
|
rang[3] = ellchangepoint(rang[3],ellinverturst(urst));
|
|
-if( DEBUGLEVEL_ell >= 3, print(" end of ellrank"));
|
|
+if( DEBUGLEVEL_ell >= 3, print(" end of ellQ_ellrank"));
|
|
|
|
return(rang);
|
|
}
|
|
@@ -2106,13 +2106,13 @@ if( DEBUGLEVEL_ell >= 3, print(" end of ell2descent_viaisog"));
|
|
{
|
|
\\ functions for elliptic curves
|
|
addhelp(ell2descent_complete,
|
|
- "ell2descent_complete(e1,e2,e3): Performs a complete 2-descent on the elliptic curve y^2 = (x-e1)*(x-e2)*(x-e3). See ?ellrank for the format of the output.");
|
|
+ "ell2descent_complete(e1,e2,e3): Performs a complete 2-descent on the elliptic curve y^2 = (x-e1)*(x-e2)*(x-e3). See ?ellQ_ellrank for the format of the output.");
|
|
addhelp(ell2descent_gen,
|
|
- "ell2descent_gen((E,bnf,k=1,help=[]): E is a vector of the form [0,A,0,B,C], (or the result of ellinit of such a vector) A,B,C integers such that x^3+A*x^2+B*x+C; bnf is the corresponding bnfinit(,1); Performs 2-descent on the elliptic curve Ek: k*y^2=x^3+A*x^2+B*x+C. See ?ellrank for the format of the output.");
|
|
+ "ell2descent_gen((E,bnf,k=1,help=[]): E is a vector of the form [0,A,0,B,C], (or the result of ellinit of such a vector) A,B,C integers such that x^3+A*x^2+B*x+C; bnf is the corresponding bnfinit(,1); Performs 2-descent on the elliptic curve Ek: k*y^2=x^3+A*x^2+B*x+C. See ?ellQ_ellrank for the format of the output.");
|
|
addhelp(ell2descent_viaisog,
|
|
- "ell2descent_viaisog(E,help=[]): E is an elliptic curve of the form [0,a,0,b,0], with a, b integers. Performs a 2-descent via isogeny on E. See ?ellrank for the format of the output.");
|
|
- addhelp(ellrank,
|
|
- "ellrank(E,help=[]): E is any elliptic curve defined over Q. Returns a vector [r,s,v], where r is a lower bound for the rank of E, s is the rank of its 2-Selmer group and v is a list of independant points in E(Q)/2E(Q). If help is a vector of nontrivial points on E, the result might be faster. This function might be used in conjunction with elltors2(E). See also ?default_ellQ");
|
|
+ "ell2descent_viaisog(E,help=[]): E is an elliptic curve of the form [0,a,0,b,0], with a, b integers. Performs a 2-descent via isogeny on E. See ?ellQ_ellrank for the format of the output.");
|
|
+ addhelp(ellQ_ellrank,
|
|
+ "ellQ_ellrank(E,help=[]): E is any elliptic curve defined over Q. Returns a vector [r,s,v], where r is a lower bound for the rank of E, s is the rank of its 2-Selmer group and v is a list of independant points in E(Q)/2E(Q). If help is a vector of nontrivial points on E, the result might be faster. This function might be used in conjunction with elltors2(E). See also ?default_ellQ");
|
|
addhelp(ellhalf,
|
|
"ellhalf(E,P): returns the vector of all points Q on the elliptic curve E such that 2Q = P");
|
|
addhelp(ellredgen,
|
|
@@ -2143,7 +2143,7 @@ if( DEBUGLEVEL_ell >= 3, print(" end of ell2descent_viaisog"));
|
|
|
|
\\ others
|
|
addhelp(default_ellQ,
|
|
- "default_ellQ(DEBUGLEVEL_ell, LIM1, LIM3, LIMTRIV, ELLREDGENFLAG, COMPLETE, MAXPROB, LIMBIGPRIME): set the value of the global variables used for ellrank() and other related functions. DEBUGLEVEL_ell: 0-5: choose the quantity of information printed during the computation (default=0: print nothing); LIM1 (resp LIM3): search limit for easy (resp hard) points on quartics; LIMTRIV: search limit for trivial points on elliptic curves; ELLREDGENFLAG: if != 0, try to reduce the generators at the end; COMPLETE: if != 0 and full 2-torsion, use complete 2-descent, otherwise via 2-isogeny; MAXPROB, LIMBIGPRIME: technical.");
|
|
+ "default_ellQ(DEBUGLEVEL_ell, LIM1, LIM3, LIMTRIV, ELLREDGENFLAG, COMPLETE, MAXPROB, LIMBIGPRIME): set the value of the global variables used for ellQ_ellrank() and other related functions. DEBUGLEVEL_ell: 0-5: choose the quantity of information printed during the computation (default=0: print nothing); LIM1 (resp LIM3): search limit for easy (resp hard) points on quartics; LIMTRIV: search limit for trivial points on elliptic curves; ELLREDGENFLAG: if != 0, try to reduce the generators at the end; COMPLETE: if != 0 and full 2-torsion, use complete 2-descent, otherwise via 2-isogeny; MAXPROB, LIMBIGPRIME: technical.");
|
|
/* addhelp(DEBUGLEVEL_ell,
|
|
"DEBUGLEVEL_ell: Choose a higher value of this global variable to have more details of the computations printed during the 2-descent algorithm. 0 = don't print anything; 1 = (default) just print the result; 2 = print more details including the Selmer group and the nontrivial quartics.");
|
|
*/
|
|
diff --git a/src/sage/ext_data/pari/simon/qfsolve.gp b/src/sage/ext_data/pari/simon/qfsolve.gp
|
|
index 501fb50828..2107288c1d 100644
|
|
--- a/src/sage/ext_data/pari/simon/qfsolve.gp
|
|
+++ b/src/sage/ext_data/pari/simon/qfsolve.gp
|
|
@@ -434,146 +434,6 @@ my(cc);
|
|
return([U3~*G3*U3,red[2]*U1*U2*U3]);
|
|
}
|
|
|
|
-\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
|
-\\ QUADRATIC FORMS MINIMIZATION \\
|
|
-\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
|
-
|
|
-\\ Minimization of the quadratic form G, with nonzero determinant.
|
|
-\\ of dimension n>=2.
|
|
-\\ G must by symmetric and have integral coefficients.
|
|
-\\ Returns [G',U,factd] with U in GLn(Q) such that G'=U~*G*U*constant
|
|
-\\ is integral and has minimal determinant.
|
|
-\\ In dimension 3 or 4, may return a prime p
|
|
-\\ if the reduction at p is impossible because of the local non solvability.
|
|
-\\ If given, factdetG must be equal to factor(abs(det(G))).
|
|
-{qfminimize(G,factdetG) =
|
|
-my(factd,U,Ker,Ker2,sol,aux,di);
|
|
-my(p);
|
|
-my(n,lf,i,vp,dimKer,dimKer2,m);
|
|
-
|
|
- n = length(G);
|
|
- factd = matrix(0,2);
|
|
- if( !factdetG, factdetG = factor(matdet(G)));
|
|
-
|
|
- lf = length(factdetG[,1]);
|
|
- i = 1; U = matid(n);
|
|
-
|
|
- while(i <= lf,
|
|
- vp = factdetG[i,2];
|
|
- if( vp == 0, i++; next);
|
|
- p = factdetG[i,1];
|
|
- if( p == -1, i++; next);
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" p = ",p,"^",vp));
|
|
-
|
|
-\\ The case vp = 1 can be minimized only if n is odd.
|
|
- if( vp == 1 && n%2 == 0,
|
|
- factd = concat(factd~, Mat([p,1])~)~;
|
|
- i++; next
|
|
- );
|
|
- Ker = kermodp(G,p); dimKer = Ker[1]; Ker = Ker[2];
|
|
-
|
|
-\\ Rem: we must have dimKer <= vp
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" dimKer = ",dimKer));
|
|
-\\ trivial case: dimKer = n
|
|
- if( dimKer == n,
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" case 0: dimKer = n"));
|
|
- G /= p;
|
|
- factdetG[i,2] -= n;
|
|
- next
|
|
- );
|
|
- G = Ker~*G*Ker;
|
|
- U = U*Ker;
|
|
-
|
|
-\\ 1st case: dimKer < vp
|
|
-\\ then the kernel mod p contains a kernel mod p^2
|
|
- if( dimKer < vp,
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" case 1: dimker < vp"));
|
|
- if( dimKer == 1,
|
|
-\\ G[,1] /= p; G[1,] /= p;
|
|
- G[,1] /= p; G[1,] = G[1,]/p;
|
|
- U[,1] /= p;
|
|
- factdetG[i,2] -= 2
|
|
- ,
|
|
- Ker2 = kermodp(matrix(dimKer,dimKer,j,k,G[j,k]/p),p);
|
|
- dimKer2 = Ker2[1]; Ker2 = Ker2[2];
|
|
- for( j = 1, dimKer2, Ker2[,j] /= p);
|
|
- Ker2 = matdiagonalblock([Ker2,matid(n-dimKer)]);
|
|
- G = Ker2~*G*Ker2;
|
|
- U = U*Ker2;
|
|
- factdetG[i,2] -= 2*dimKer2
|
|
-);
|
|
-
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" end of case 1"));
|
|
- next
|
|
- );
|
|
-
|
|
-\\ Now, we have vp = dimKer
|
|
-\\ 2nd case: the dimension of the kernel is >=2
|
|
-\\ and contains an element of norm 0 mod p^2
|
|
-
|
|
-\\ search for an element of norm p^2... in the kernel
|
|
- if( dimKer > 2 ||
|
|
- (dimKer == 2 && issquare( di = Mod((G[1,2]^2-G[1,1]*G[2,2])/p^2,p))),
|
|
- if( dimKer > 2,
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" case 2.1"));
|
|
- dimKer = 3;
|
|
- sol = qfsolvemodp(matrix(3,3,j,k,G[j,k]/p),p)
|
|
- ,
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" case 2.2"));
|
|
- if( G[1,1]%p^2 == 0,
|
|
- sol = [1,0]~
|
|
- , sol = [-G[1,2]/p+sqrt(di),Mod(G[1,1]/p,p)]~
|
|
- )
|
|
- );
|
|
- sol = centerlift(sol);
|
|
- sol /= content(sol);
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" sol = ",sol));
|
|
- Ker = vectorv(n, j, if( j<= dimKer, sol[j], 0)); \\ fill with 0's
|
|
- Ker = completebasis(Ker,1);
|
|
- Ker[,n] /= p;
|
|
- G = Ker~*G*Ker;
|
|
- U = U*Ker;
|
|
- factdetG[i,2] -= 2;
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" end of case 2"));
|
|
- next
|
|
- );
|
|
-
|
|
-\\ Now, we have vp = dimKer <= 2
|
|
-\\ and the kernel contains no vector with norm p^2...
|
|
-
|
|
-\\ In some cases, exchanging the kernel and the image
|
|
-\\ makes the minimization easy.
|
|
-
|
|
- m = (n-1)\2-1;
|
|
- if( ( vp == 1 && issquare(Mod(-(-1)^m*matdet(G)/G[1,1],p)))
|
|
- || ( vp == 2 && n%2 == 1 && n >= 5)
|
|
- || ( vp == 2 && n%2 == 0 && !issquare(Mod((-1)^m*matdet(G)/p^2,p)))
|
|
- ,
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" case 3"));
|
|
- Ker = matid(n);
|
|
- for( j = dimKer+1, n, Ker[j,j] = p);
|
|
- G = Ker~*G*Ker/p;
|
|
- U = U*Ker;
|
|
- factdetG[i,2] -= 2*dimKer-n;
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" end of case 3"));
|
|
- next
|
|
- );
|
|
-
|
|
-\\ Minimization was not possible se far.
|
|
-\\ If n == 3 or 4, this proves the local non-solubility at p.
|
|
- if( n == 3 || n == 4,
|
|
-if( DEBUGLEVEL_qfsolve >= 1, print(" no local solution at ",p));
|
|
- return(p));
|
|
-
|
|
-if( DEBUGLEVEL_qfsolve >= 4, print(" prime ",p," finished"));
|
|
- factd = concat(factd~,Mat([p,vp])~)~;
|
|
- i++
|
|
- );
|
|
-\\ apply LLL to avoid coefficients explosion
|
|
- aux = qflll(U/content(U));
|
|
-return([aux~*G*aux,U*aux,factd]);
|
|
-}
|
|
-
|
|
\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
|
\\ CLASS GROUP COMPUTATIONS \\
|
|
\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
|
|
diff --git a/src/sage/geometry/polyhedron/backend_field.py b/src/sage/geometry/polyhedron/backend_field.py
|
|
index 6b921d23a6..2f32c58b1e 100644
|
|
--- a/src/sage/geometry/polyhedron/backend_field.py
|
|
+++ b/src/sage/geometry/polyhedron/backend_field.py
|
|
@@ -265,7 +265,7 @@ class Polyhedron_field(Polyhedron_base):
|
|
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
|
|
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
|
|
sage: p.Vrepresentation() # optional - sage.rings.number_field
|
|
- (A vertex at (0.?e-15, 0.707106781186548?),
|
|
+ (A vertex at (0.?e-16, 0.7071067811865475?),
|
|
A vertex at (1.414213562373095?, 0),
|
|
A vertex at (4.000000000000000?, 0.372677996249965?))
|
|
"""
|
|
@@ -308,7 +308,7 @@ class Polyhedron_field(Polyhedron_base):
|
|
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
|
|
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
|
|
sage: p.Vrepresentation() # optional - sage.rings.number_field
|
|
- (A vertex at (0.?e-15, 0.707106781186548?),
|
|
+ (A vertex at (0.?e-16, 0.7071067811865475?),
|
|
A vertex at (1.414213562373095?, 0),
|
|
A vertex at (4.000000000000000?, 0.372677996249965?))
|
|
"""
|
|
diff --git a/src/sage/geometry/polyhedron/backend_normaliz.py b/src/sage/geometry/polyhedron/backend_normaliz.py
|
|
index 86b89632a5..ca8a43b248 100644
|
|
--- a/src/sage/geometry/polyhedron/backend_normaliz.py
|
|
+++ b/src/sage/geometry/polyhedron/backend_normaliz.py
|
|
@@ -53,7 +53,7 @@ def _number_field_elements_from_algebraics_list_of_lists_of_lists(listss, **kwds
|
|
1.732050807568878?
|
|
sage: from sage.geometry.polyhedron.backend_normaliz import _number_field_elements_from_algebraics_list_of_lists_of_lists
|
|
sage: K, results, hom = _number_field_elements_from_algebraics_list_of_lists_of_lists([[[rt2], [1]], [[rt3]], [[1], []]]); results # optional - sage.rings.number_field
|
|
- [[[-a^3 + 3*a], [1]], [[-a^2 + 2]], [[1], []]]
|
|
+ [[[-a^3 + 3*a], [1]], [[a^2 - 2]], [[1], []]]
|
|
"""
|
|
from sage.rings.qqbar import number_field_elements_from_algebraics
|
|
numbers = []
|
|
diff --git a/src/sage/groups/matrix_gps/isometries.py b/src/sage/groups/matrix_gps/isometries.py
|
|
index f9111a2c92..cca45e7175 100644
|
|
--- a/src/sage/groups/matrix_gps/isometries.py
|
|
+++ b/src/sage/groups/matrix_gps/isometries.py
|
|
@@ -11,11 +11,11 @@ EXAMPLES::
|
|
sage: L = IntegralLattice("D4")
|
|
sage: O = L.orthogonal_group()
|
|
sage: O
|
|
- Group of isometries with 5 generators (
|
|
- [-1 0 0 0] [0 0 0 1] [-1 -1 -1 -1] [ 1 1 0 0] [ 1 0 0 0]
|
|
- [ 0 -1 0 0] [0 1 0 0] [ 0 0 1 0] [ 0 0 1 0] [-1 -1 -1 -1]
|
|
- [ 0 0 -1 0] [0 0 1 0] [ 0 1 0 1] [ 0 1 0 1] [ 0 0 1 0]
|
|
- [ 0 0 0 -1], [1 0 0 0], [ 0 -1 -1 0], [ 0 -1 -1 0], [ 0 0 0 1]
|
|
+ Group of isometries with 3 generators (
|
|
+ [0 0 0 1] [ 1 1 0 0] [ 1 0 0 0]
|
|
+ [0 1 0 0] [ 0 0 1 0] [-1 -1 -1 -1]
|
|
+ [0 0 1 0] [ 0 1 0 1] [ 0 0 1 0]
|
|
+ [1 0 0 0], [ 0 -1 -1 0], [ 0 0 0 1]
|
|
)
|
|
|
|
Basic functionality is provided by GAP::
|
|
diff --git a/src/sage/interfaces/genus2reduction.py b/src/sage/interfaces/genus2reduction.py
|
|
index 56ae04b235..7a4794daf2 100644
|
|
--- a/src/sage/interfaces/genus2reduction.py
|
|
+++ b/src/sage/interfaces/genus2reduction.py
|
|
@@ -143,31 +143,31 @@ class ReductionData(SageObject):
|
|
sur un corps de valuation discrète", Trans. AMS 348 (1996),
|
|
4577-4610, Section 7.2, Proposition 4).
|
|
"""
|
|
- def __init__(self, pari_result, P, Q, minimal_equation, minimal_disc,
|
|
- local_data, conductor, prime_to_2_conductor_only):
|
|
+ def __init__(self, pari_result, P, Q, Pmin, Qmin, minimal_disc,
|
|
+ local_data, conductor):
|
|
self.pari_result = pari_result
|
|
self.P = P
|
|
self.Q = Q
|
|
- self.minimal_equation = minimal_equation
|
|
+ self.Pmin = Pmin
|
|
+ self.Qmin = Qmin
|
|
self.minimal_disc = minimal_disc
|
|
self.local_data = local_data
|
|
self.conductor = conductor
|
|
- self.prime_to_2_conductor_only = prime_to_2_conductor_only
|
|
|
|
def _repr_(self):
|
|
- if self.prime_to_2_conductor_only:
|
|
- ex = ' (away from 2)'
|
|
- else:
|
|
- ex = ''
|
|
if self.Q == 0:
|
|
yterm = ''
|
|
else:
|
|
yterm = '+ (%s)*y '%self.Q
|
|
+
|
|
s = 'Reduction data about this proper smooth genus 2 curve:\n'
|
|
s += '\ty^2 %s= %s\n'%(yterm, self.P)
|
|
- s += 'A Minimal Equation (away from 2):\n\ty^2 = %s\n'%self.minimal_equation
|
|
- s += 'Minimal Discriminant (away from 2): %s\n'%self.minimal_disc
|
|
- s += 'Conductor%s: %s\n'%(ex, self.conductor)
|
|
+ if self.Qmin:
|
|
+ s += 'A Minimal Equation:\n\ty^2 + (%s)y = %s\n'%(self.Qmin, self.Pmin)
|
|
+ else:
|
|
+ s += 'A Minimal Equation:\n\ty^2 = %s\n'%self.Pmin
|
|
+ s += 'Minimal Discriminant: %s\n'%self.minimal_disc
|
|
+ s += 'Conductor: %s\n'%self.conductor
|
|
s += 'Local Data:\n%s'%self._local_data_str()
|
|
return s
|
|
|
|
@@ -242,17 +242,7 @@ class Genus2reduction(SageObject):
|
|
sage: factor(R.conductor)
|
|
5^4 * 2267
|
|
|
|
- This means that only the odd part of the conductor is known.
|
|
-
|
|
- ::
|
|
-
|
|
- sage: R.prime_to_2_conductor_only
|
|
- True
|
|
-
|
|
- The discriminant is always minimal away from 2, but possibly not at
|
|
- 2.
|
|
-
|
|
- ::
|
|
+ The discriminant is always minimal::
|
|
|
|
sage: factor(R.minimal_disc)
|
|
2^3 * 5^5 * 2267
|
|
@@ -264,10 +254,10 @@ class Genus2reduction(SageObject):
|
|
sage: R
|
|
Reduction data about this proper smooth genus 2 curve:
|
|
y^2 + (x^3 - 2*x^2 - 2*x + 1)*y = -5*x^5
|
|
- A Minimal Equation (away from 2):
|
|
- y^2 = x^6 - 240*x^4 - 2550*x^3 - 11400*x^2 - 24100*x - 19855
|
|
- Minimal Discriminant (away from 2): 56675000
|
|
- Conductor (away from 2): 1416875
|
|
+ A Minimal Equation:
|
|
+ y^2 ...
|
|
+ Minimal Discriminant: 56675000
|
|
+ Conductor: 1416875
|
|
Local Data:
|
|
p=2
|
|
(potential) stable reduction: (II), j=1
|
|
@@ -293,10 +283,10 @@ class Genus2reduction(SageObject):
|
|
sage: genus2reduction(0, x^6 + 3*x^3 + 63)
|
|
Reduction data about this proper smooth genus 2 curve:
|
|
y^2 = x^6 + 3*x^3 + 63
|
|
- A Minimal Equation (away from 2):
|
|
- y^2 = x^6 + 3*x^3 + 63
|
|
- Minimal Discriminant (away from 2): 10628388316852992
|
|
- Conductor (away from 2): 2893401
|
|
+ A Minimal Equation:
|
|
+ y^2 ...
|
|
+ Minimal Discriminant: -10628388316852992
|
|
+ Conductor: 2893401
|
|
Local Data:
|
|
p=2
|
|
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
|
|
@@ -327,9 +317,9 @@ class Genus2reduction(SageObject):
|
|
sage: genus2reduction(x^3-x^2-1, x^2 - x)
|
|
Reduction data about this proper smooth genus 2 curve:
|
|
y^2 + (x^3 - x^2 - 1)*y = x^2 - x
|
|
- A Minimal Equation (away from 2):
|
|
- y^2 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
|
|
- Minimal Discriminant (away from 2): 169
|
|
+ A Minimal Equation:
|
|
+ y^2 ...
|
|
+ Minimal Discriminant: -169
|
|
Conductor: 169
|
|
Local Data:
|
|
p=13
|
|
@@ -370,10 +360,10 @@ class Genus2reduction(SageObject):
|
|
sage: genus2reduction(x^3 - 2*x^2 - 2*x + 1, -5*x^5)
|
|
Reduction data about this proper smooth genus 2 curve:
|
|
y^2 + (x^3 - 2*x^2 - 2*x + 1)*y = -5*x^5
|
|
- A Minimal Equation (away from 2):
|
|
- y^2 = x^6 - 240*x^4 - 2550*x^3 - 11400*x^2 - 24100*x - 19855
|
|
- Minimal Discriminant (away from 2): 56675000
|
|
- Conductor (away from 2): 1416875
|
|
+ A Minimal Equation:
|
|
+ y^2 ...
|
|
+ Minimal Discriminant: 56675000
|
|
+ Conductor: 1416875
|
|
Local Data:
|
|
p=2
|
|
(potential) stable reduction: (II), j=1
|
|
@@ -389,9 +379,9 @@ class Genus2reduction(SageObject):
|
|
sage: genus2reduction(x^2 + 1, -5*x^5)
|
|
Reduction data about this proper smooth genus 2 curve:
|
|
y^2 + (x^2 + 1)*y = -5*x^5
|
|
- A Minimal Equation (away from 2):
|
|
- y^2 = -20*x^5 + x^4 + 2*x^2 + 1
|
|
- Minimal Discriminant (away from 2): 48838125
|
|
+ A Minimal Equation:
|
|
+ y^2 ...
|
|
+ Minimal Discriminant: 48838125
|
|
Conductor: 32025
|
|
Local Data:
|
|
p=3
|
|
@@ -412,9 +402,9 @@ class Genus2reduction(SageObject):
|
|
sage: genus2reduction(x^3 + x^2 + x,-2*x^5 + 3*x^4 - x^3 - x^2 - 6*x - 2)
|
|
Reduction data about this proper smooth genus 2 curve:
|
|
y^2 + (x^3 + x^2 + x)*y = -2*x^5 + 3*x^4 - x^3 - x^2 - 6*x - 2
|
|
- A Minimal Equation (away from 2):
|
|
- y^2 = x^6 + 18*x^3 + 36*x^2 - 27
|
|
- Minimal Discriminant (away from 2): 1520984142
|
|
+ A Minimal Equation:
|
|
+ y^2 ...
|
|
+ Minimal Discriminant: 1520984142
|
|
Conductor: 954
|
|
Local Data:
|
|
p=2
|
|
@@ -436,18 +426,10 @@ class Genus2reduction(SageObject):
|
|
raise ValueError("Q (=%s) must have degree at most 3" % Q)
|
|
|
|
res = pari.genus2red([P, Q])
|
|
-
|
|
conductor = ZZ(res[0])
|
|
- minimal_equation = R(res[2])
|
|
-
|
|
- minimal_disc = QQ(res[2].poldisc()).abs()
|
|
- if minimal_equation.degree() == 5:
|
|
- minimal_disc *= minimal_equation[5]**2
|
|
- # Multiply with suitable power of 2 of the form 2^(2*(d-1) - 12)
|
|
- b = 2 * (minimal_equation.degree() - 1)
|
|
- k = QQ((12 - minimal_disc.valuation(2), b)).ceil()
|
|
- minimal_disc >>= 12 - b*k
|
|
- minimal_disc = ZZ(minimal_disc)
|
|
+ Pmin = R(res[2][0])
|
|
+ Qmin = R(res[2][1])
|
|
+ minimal_disc = ZZ(pari.hyperelldisc(res[2]))
|
|
|
|
local_data = {}
|
|
for red in res[3]:
|
|
@@ -468,9 +450,7 @@ class Genus2reduction(SageObject):
|
|
|
|
local_data[p] = data
|
|
|
|
- prime_to_2_conductor_only = (-1 in res[1].component(2))
|
|
- return ReductionData(res, P, Q, minimal_equation, minimal_disc, local_data,
|
|
- conductor, prime_to_2_conductor_only)
|
|
+ return ReductionData(res, P, Q, Pmin, Qmin, minimal_disc, local_data, conductor)
|
|
|
|
def __reduce__(self):
|
|
return _reduce_load_genus2reduction, tuple([])
|
|
diff --git a/src/sage/lfunctions/dokchitser.py b/src/sage/lfunctions/dokchitser.py
|
|
index fec450d7bc..236402c293 100644
|
|
--- a/src/sage/lfunctions/dokchitser.py
|
|
+++ b/src/sage/lfunctions/dokchitser.py
|
|
@@ -337,6 +337,7 @@ class Dokchitser(SageObject):
|
|
# After init_coeffs is called, future calls to this method should
|
|
# return the full output for further parsing
|
|
raise RuntimeError("unable to create L-series, due to precision or other limits in PARI")
|
|
+ t = t.replace(" *** _^_: Warning: normalizing a series with 0 leading term.\n", "")
|
|
return t
|
|
|
|
def __check_init(self):
|
|
diff --git a/src/sage/lfunctions/pari.py b/src/sage/lfunctions/pari.py
|
|
index d2b20f1891..6c31efe239 100644
|
|
--- a/src/sage/lfunctions/pari.py
|
|
+++ b/src/sage/lfunctions/pari.py
|
|
@@ -339,7 +339,7 @@ def lfun_eta_quotient(scalings, exponents):
|
|
0.0374412812685155
|
|
|
|
sage: lfun_eta_quotient([6],[4])
|
|
- [[Vecsmall([7]), [Vecsmall([6]), Vecsmall([4])]], 0, [0, 1], 2, 36, 1]
|
|
+ [[Vecsmall([7]), [Vecsmall([6]), Vecsmall([4]), 0]], 0, [0, 1], 2, 36, 1]
|
|
|
|
sage: lfun_eta_quotient([2,1,4], [5,-2,-2])
|
|
Traceback (most recent call last):
|
|
diff --git a/src/sage/libs/pari/tests.py b/src/sage/libs/pari/tests.py
|
|
index e5a2aa2517..0efcb15de0 100644
|
|
--- a/src/sage/libs/pari/tests.py
|
|
+++ b/src/sage/libs/pari/tests.py
|
|
@@ -356,7 +356,7 @@ Constructors::
|
|
[2, 4]~*x + [1, 3]~
|
|
|
|
sage: pari(3).Qfb(7, 1)
|
|
- Qfb(3, 7, 1, 0.E-19)
|
|
+ Qfb(3, 7, 1)
|
|
sage: pari(3).Qfb(7, 2)
|
|
Traceback (most recent call last):
|
|
...
|
|
@@ -512,7 +512,7 @@ Basic functions::
|
|
sage: pari('sqrt(-2)').frac()
|
|
Traceback (most recent call last):
|
|
...
|
|
- PariError: incorrect type in gfloor (t_COMPLEX)
|
|
+ PariError: incorrect type in gfrac (t_COMPLEX)
|
|
|
|
sage: pari('1+2*I').imag()
|
|
2
|
|
diff --git a/src/sage/modular/cusps_nf.py b/src/sage/modular/cusps_nf.py
|
|
index 25d93cac92..157ebabe29 100644
|
|
--- a/src/sage/modular/cusps_nf.py
|
|
+++ b/src/sage/modular/cusps_nf.py
|
|
@@ -1220,7 +1220,7 @@ def units_mod_ideal(I):
|
|
sage: I = k.ideal(5, a + 1)
|
|
sage: units_mod_ideal(I)
|
|
[1,
|
|
- 2*a^2 + 4*a - 1,
|
|
+ -2*a^2 - 4*a + 1,
|
|
...]
|
|
|
|
::
|
|
diff --git a/src/sage/modular/modform_hecketriangle/hecke_triangle_group_element.py b/src/sage/modular/modform_hecketriangle/hecke_triangle_group_element.py
|
|
index a881336596..090d1bfaf0 100644
|
|
--- a/src/sage/modular/modform_hecketriangle/hecke_triangle_group_element.py
|
|
+++ b/src/sage/modular/modform_hecketriangle/hecke_triangle_group_element.py
|
|
@@ -43,7 +43,7 @@ def coerce_AA(p):
|
|
sage: AA(p)._exact_field()
|
|
Number Field in a with defining polynomial y^8 ... with a in ...
|
|
sage: coerce_AA(p)._exact_field()
|
|
- Number Field in a with defining polynomial y^4 - 1910*y^2 - 3924*y + 681058 with a in 39.710518724...?
|
|
+ Number Field in a with defining polynomial y^4 - 1910*y^2 - 3924*y + 681058 with a in ...?
|
|
"""
|
|
el = AA(p)
|
|
el.simplify()
|
|
diff --git a/src/sage/modular/modsym/p1list_nf.py b/src/sage/modular/modsym/p1list_nf.py
|
|
index 222caacca8..f9d969732c 100644
|
|
--- a/src/sage/modular/modsym/p1list_nf.py
|
|
+++ b/src/sage/modular/modsym/p1list_nf.py
|
|
@@ -58,7 +58,7 @@ Lift an MSymbol to a matrix in `SL(2, R)`:
|
|
|
|
sage: alpha = MSymbol(N, a + 2, 3*a^2)
|
|
sage: alpha.lift_to_sl2_Ok()
|
|
- [-3*a^2 + a + 12, 25*a^2 - 50*a + 100, a + 2, a^2 - 3*a + 3]
|
|
+ [-1, 4*a^2 - 13*a + 23, a + 2, 5*a^2 + 3*a - 3]
|
|
sage: Ok = k.ring_of_integers()
|
|
sage: M = Matrix(Ok, 2, alpha.lift_to_sl2_Ok())
|
|
sage: det(M)
|
|
@@ -945,11 +945,11 @@ class P1NFList(SageObject):
|
|
sage: N = k.ideal(5, a + 1)
|
|
sage: P = P1NFList(N)
|
|
sage: u = k.unit_group().gens_values(); u
|
|
- [-1, 2*a^2 + 4*a - 1]
|
|
+ [-1, -2*a^2 - 4*a + 1]
|
|
sage: P.apply_J_epsilon(4, -1)
|
|
2
|
|
sage: P.apply_J_epsilon(4, u[0], u[1])
|
|
- 1
|
|
+ 5
|
|
|
|
::
|
|
|
|
diff --git a/src/sage/modules/free_quadratic_module_integer_symmetric.py b/src/sage/modules/free_quadratic_module_integer_symmetric.py
|
|
index a206f0c721..aeb19ab669 100644
|
|
--- a/src/sage/modules/free_quadratic_module_integer_symmetric.py
|
|
+++ b/src/sage/modules/free_quadratic_module_integer_symmetric.py
|
|
@@ -1168,11 +1168,11 @@ class FreeQuadraticModule_integer_symmetric(FreeQuadraticModule_submodule_with_b
|
|
sage: A4 = IntegralLattice("A4")
|
|
sage: Aut = A4.orthogonal_group()
|
|
sage: Aut
|
|
- Group of isometries with 5 generators (
|
|
- [-1 0 0 0] [0 0 0 1] [-1 -1 -1 0] [ 1 0 0 0] [ 1 0 0 0]
|
|
- [ 0 -1 0 0] [0 0 1 0] [ 0 0 0 -1] [-1 -1 -1 -1] [ 0 1 0 0]
|
|
- [ 0 0 -1 0] [0 1 0 0] [ 0 0 1 1] [ 0 0 0 1] [ 0 0 1 1]
|
|
- [ 0 0 0 -1], [1 0 0 0], [ 0 1 0 0], [ 0 0 1 0], [ 0 0 0 -1]
|
|
+ Group of isometries with 4 generators (
|
|
+ [0 0 0 1] [-1 -1 -1 0] [ 1 0 0 0] [ 1 0 0 0]
|
|
+ [0 0 1 0] [ 0 0 0 -1] [-1 -1 -1 -1] [ 0 1 0 0]
|
|
+ [0 1 0 0] [ 0 0 1 1] [ 0 0 0 1] [ 0 0 1 1]
|
|
+ [1 0 0 0], [ 0 1 0 0], [ 0 0 1 0], [ 0 0 0 -1]
|
|
)
|
|
|
|
The group acts from the right on the lattice and its discriminant group::
|
|
@@ -1180,19 +1180,19 @@ class FreeQuadraticModule_integer_symmetric(FreeQuadraticModule_submodule_with_b
|
|
sage: x = A4.an_element()
|
|
sage: g = Aut.an_element()
|
|
sage: g
|
|
- [ 1 1 1 0]
|
|
- [ 0 0 -1 0]
|
|
- [ 0 0 1 1]
|
|
- [ 0 -1 -1 -1]
|
|
+ [-1 -1 -1 0]
|
|
+ [ 0 0 1 0]
|
|
+ [ 0 0 -1 -1]
|
|
+ [ 0 1 1 1]
|
|
sage: x*g
|
|
- (1, 1, 1, 0)
|
|
+ (-1, -1, -1, 0)
|
|
sage: (x*g).parent()==A4
|
|
True
|
|
sage: (g*x).parent()
|
|
Vector space of dimension 4 over Rational Field
|
|
sage: y = A4.discriminant_group().an_element()
|
|
sage: y*g
|
|
- (1)
|
|
+ (4)
|
|
|
|
If the group is finite we can compute the usual things::
|
|
|
|
@@ -1208,10 +1208,10 @@ class FreeQuadraticModule_integer_symmetric(FreeQuadraticModule_submodule_with_b
|
|
|
|
sage: A2 = IntegralLattice(matrix.identity(3),Matrix(ZZ,2,3,[1,-1,0,0,1,-1]))
|
|
sage: A2.orthogonal_group()
|
|
- Group of isometries with 3 generators (
|
|
- [-1/3 2/3 2/3] [ 2/3 2/3 -1/3] [1 0 0]
|
|
- [ 2/3 -1/3 2/3] [ 2/3 -1/3 2/3] [0 0 1]
|
|
- [ 2/3 2/3 -1/3], [-1/3 2/3 2/3], [0 1 0]
|
|
+ Group of isometries with 2 generators (
|
|
+ [ 2/3 2/3 -1/3] [1 0 0]
|
|
+ [ 2/3 -1/3 2/3] [0 0 1]
|
|
+ [-1/3 2/3 2/3], [0 1 0]
|
|
)
|
|
|
|
It can be negative definite as well::
|
|
diff --git a/src/sage/quadratic_forms/binary_qf.py b/src/sage/quadratic_forms/binary_qf.py
|
|
index cfa3ada73e..5ac823bc6c 100755
|
|
--- a/src/sage/quadratic_forms/binary_qf.py
|
|
+++ b/src/sage/quadratic_forms/binary_qf.py
|
|
@@ -141,7 +141,7 @@ class BinaryQF(SageObject):
|
|
and a.degree() == 2 and a.parent().ngens() == 2):
|
|
x, y = a.parent().gens()
|
|
a, b, c = [a.monomial_coefficient(mon) for mon in [x**2, x*y, y**2]]
|
|
- elif isinstance(a, pari_gen) and a.type() in ('t_QFI', 't_QFR'):
|
|
+ elif isinstance(a, pari_gen) and a.type() in ('t_QFI', 't_QFR', 't_QFB'):
|
|
# a has 3 or 4 components
|
|
a, b, c = a[0], a[1], a[2]
|
|
try:
|
|
diff --git a/src/sage/quadratic_forms/genera/genus.py b/src/sage/quadratic_forms/genera/genus.py
|
|
index 8290b6c4fa..0fc43f33c6 100644
|
|
--- a/src/sage/quadratic_forms/genera/genus.py
|
|
+++ b/src/sage/quadratic_forms/genera/genus.py
|
|
@@ -3088,8 +3088,8 @@ class GenusSymbol_global_ring():
|
|
sage: G = Genus(matrix(ZZ, 3, [6,3,0, 3,6,0, 0,0,2]))
|
|
sage: G.representatives()
|
|
(
|
|
- [2 0 0] [ 2 -1 0]
|
|
- [0 6 3] [-1 2 0]
|
|
+ [2 0 0] [ 2 1 0]
|
|
+ [0 6 3] [ 1 2 0]
|
|
[0 3 6], [ 0 0 18]
|
|
)
|
|
|
|
diff --git a/src/sage/quadratic_forms/qfsolve.py b/src/sage/quadratic_forms/qfsolve.py
|
|
index ddde95e04f..d5e15d9f83 100644
|
|
--- a/src/sage/quadratic_forms/qfsolve.py
|
|
+++ b/src/sage/quadratic_forms/qfsolve.py
|
|
@@ -70,7 +70,7 @@ def qfsolve(G):
|
|
|
|
sage: M = Matrix(QQ, [[3, 0, 0, 0], [0, 5, 0, 0], [0, 0, -7, 0], [0, 0, 0, -11]])
|
|
sage: qfsolve(M)
|
|
- (3, -4, -3, -2)
|
|
+ (3, 4, -3, -2)
|
|
"""
|
|
ret = G.__pari__().qfsolve()
|
|
if ret.type() == 't_COL':
|
|
diff --git a/src/sage/quadratic_forms/quadratic_form__automorphisms.py b/src/sage/quadratic_forms/quadratic_form__automorphisms.py
|
|
index c36c667e3b..3d72cf3be1 100644
|
|
--- a/src/sage/quadratic_forms/quadratic_form__automorphisms.py
|
|
+++ b/src/sage/quadratic_forms/quadratic_form__automorphisms.py
|
|
@@ -300,9 +300,9 @@ def automorphism_group(self):
|
|
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
|
|
sage: Q.automorphism_group()
|
|
Matrix group over Rational Field with 3 generators (
|
|
- [-1 0 0] [0 0 1] [ 0 0 1]
|
|
- [ 0 -1 0] [0 1 0] [-1 0 0]
|
|
- [ 0 0 -1], [1 0 0], [ 0 1 0]
|
|
+ [ 0 0 1] [1 0 0] [ 1 0 0]
|
|
+ [-1 0 0] [0 0 1] [ 0 -1 0]
|
|
+ [ 0 1 0], [0 1 0], [ 0 0 1]
|
|
)
|
|
|
|
::
|
|
diff --git a/src/sage/rings/finite_rings/finite_field_prime_modn.py b/src/sage/rings/finite_rings/finite_field_prime_modn.py
|
|
index 9129ecb56a..d5a4cb8f22 100644
|
|
--- a/src/sage/rings/finite_rings/finite_field_prime_modn.py
|
|
+++ b/src/sage/rings/finite_rings/finite_field_prime_modn.py
|
|
@@ -111,7 +111,7 @@ class FiniteField_prime_modn(FiniteField_generic, integer_mod_ring.IntegerModRin
|
|
sage: RF13 = K.residue_field(pp)
|
|
sage: RF13.hom([GF(13)(1)])
|
|
Ring morphism:
|
|
- From: Residue field of Fractional ideal (w + 18)
|
|
+ From: Residue field of Fractional ideal (-w - 18)
|
|
To: Finite Field of size 13
|
|
Defn: 1 |--> 1
|
|
|
|
diff --git a/src/sage/rings/finite_rings/residue_field.pyx b/src/sage/rings/finite_rings/residue_field.pyx
|
|
index 7596f2a302..1e1869f1b1 100644
|
|
--- a/src/sage/rings/finite_rings/residue_field.pyx
|
|
+++ b/src/sage/rings/finite_rings/residue_field.pyx
|
|
@@ -20,13 +20,13 @@ monogenic (i.e., 2 is an essential discriminant divisor)::
|
|
|
|
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
|
|
sage: F = K.factor(2); F
|
|
- (Fractional ideal (1/2*a^2 - 1/2*a + 1)) * (Fractional ideal (-a^2 + 2*a - 3)) * (Fractional ideal (-3/2*a^2 + 5/2*a - 4))
|
|
+ (Fractional ideal (-1/2*a^2 + 1/2*a - 1)) * (Fractional ideal (-a^2 + 2*a - 3)) * (Fractional ideal (3/2*a^2 - 5/2*a + 4))
|
|
sage: F[0][0].residue_field()
|
|
- Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
|
|
+ Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1)
|
|
sage: F[1][0].residue_field()
|
|
Residue field of Fractional ideal (-a^2 + 2*a - 3)
|
|
sage: F[2][0].residue_field()
|
|
- Residue field of Fractional ideal (-3/2*a^2 + 5/2*a - 4)
|
|
+ Residue field of Fractional ideal (3/2*a^2 - 5/2*a + 4)
|
|
|
|
We can also form residue fields from `\ZZ`::
|
|
|
|
@@ -258,9 +258,9 @@ class ResidueFieldFactory(UniqueFactory):
|
|
the index of ``ZZ[a]`` in the maximal order for all ``a``::
|
|
|
|
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8); P = K.ideal(2).factor()[0][0]; P
|
|
- Fractional ideal (1/2*a^2 - 1/2*a + 1)
|
|
+ Fractional ideal (-1/2*a^2 + 1/2*a - 1)
|
|
sage: F = K.residue_field(P); F
|
|
- Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
|
|
+ Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1)
|
|
sage: F(a)
|
|
0
|
|
sage: B = K.maximal_order().basis(); B
|
|
@@ -270,7 +270,7 @@ class ResidueFieldFactory(UniqueFactory):
|
|
sage: F(B[2])
|
|
0
|
|
sage: F
|
|
- Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
|
|
+ Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1)
|
|
sage: F.degree()
|
|
1
|
|
|
|
@@ -730,15 +730,15 @@ class ResidueField_generic(Field):
|
|
EXAMPLES::
|
|
|
|
sage: I = QQ[3^(1/3)].factor(5)[1][0]; I
|
|
- Fractional ideal (-a + 2)
|
|
+ Fractional ideal (a - 2)
|
|
sage: k = I.residue_field(); k
|
|
- Residue field of Fractional ideal (-a + 2)
|
|
+ Residue field of Fractional ideal (a - 2)
|
|
sage: f = k.lift_map(); f
|
|
Lifting map:
|
|
- From: Residue field of Fractional ideal (-a + 2)
|
|
+ From: Residue field of Fractional ideal (a - 2)
|
|
To: Maximal Order in Number Field in a with defining polynomial x^3 - 3 with a = 1.442249570307409?
|
|
sage: f.domain()
|
|
- Residue field of Fractional ideal (-a + 2)
|
|
+ Residue field of Fractional ideal (a - 2)
|
|
sage: f.codomain()
|
|
Maximal Order in Number Field in a with defining polynomial x^3 - 3 with a = 1.442249570307409?
|
|
sage: f(k.0)
|
|
@@ -768,7 +768,7 @@ class ResidueField_generic(Field):
|
|
|
|
sage: K.<a> = NumberField(x^3-11)
|
|
sage: F = K.ideal(37).factor(); F
|
|
- (Fractional ideal (37, a + 9)) * (Fractional ideal (37, a + 12)) * (Fractional ideal (2*a - 5))
|
|
+ (Fractional ideal (37, a + 9)) * (Fractional ideal (37, a + 12)) * (Fractional ideal (-2*a + 5))
|
|
sage: k = K.residue_field(F[0][0])
|
|
sage: l = K.residue_field(F[1][0])
|
|
sage: k == l
|
|
@@ -846,7 +846,7 @@ cdef class ReductionMap(Map):
|
|
sage: F.reduction_map()
|
|
Partially defined reduction map:
|
|
From: Number Field in a with defining polynomial x^3 + x^2 - 2*x + 8
|
|
- To: Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
|
|
+ To: Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1)
|
|
|
|
sage: K.<theta_5> = CyclotomicField(5)
|
|
sage: F = K.factor(7)[0][0].residue_field()
|
|
diff --git a/src/sage/rings/number_field/S_unit_solver.py b/src/sage/rings/number_field/S_unit_solver.py
|
|
index e99dff850f..759cbfb334 100644
|
|
--- a/src/sage/rings/number_field/S_unit_solver.py
|
|
+++ b/src/sage/rings/number_field/S_unit_solver.py
|
|
@@ -1781,20 +1781,20 @@ def sieve_ordering(SUK, q):
|
|
sage: SUK = K.S_unit_group(S=3)
|
|
sage: sieve_data = list(sieve_ordering(SUK, 19))
|
|
sage: sieve_data[0]
|
|
- (Fractional ideal (xi - 3),
|
|
- Fractional ideal (-2*xi^2 + 3),
|
|
+ (Fractional ideal (-2*xi^2 + 3),
|
|
+ Fractional ideal (-xi + 3),
|
|
Fractional ideal (2*xi + 1))
|
|
|
|
sage: sieve_data[1]
|
|
- (Residue field of Fractional ideal (xi - 3),
|
|
- Residue field of Fractional ideal (-2*xi^2 + 3),
|
|
+ (Residue field of Fractional ideal (-2*xi^2 + 3),
|
|
+ Residue field of Fractional ideal (-xi + 3),
|
|
Residue field of Fractional ideal (2*xi + 1))
|
|
|
|
sage: sieve_data[2]
|
|
- ([18, 7, 16, 4], [18, 9, 12, 8], [18, 3, 10, 10])
|
|
+ ([18, 12, 16, 8], [18, 16, 10, 4], [18, 10, 12, 10])
|
|
|
|
sage: sieve_data[3]
|
|
- (486, 648, 11664)
|
|
+ (648, 2916, 3888)
|
|
"""
|
|
|
|
K = SUK.number_field()
|
|
diff --git a/src/sage/rings/number_field/bdd_height.py b/src/sage/rings/number_field/bdd_height.py
|
|
index beb047ae02..b7c8c33d0b 100644
|
|
--- a/src/sage/rings/number_field/bdd_height.py
|
|
+++ b/src/sage/rings/number_field/bdd_height.py
|
|
@@ -248,7 +248,7 @@ def bdd_norm_pr_ideal_gens(K, norm_list):
|
|
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens
|
|
sage: K.<g> = QuadraticField(123)
|
|
sage: bdd_norm_pr_ideal_gens(K, range(5))
|
|
- {0: [0], 1: [1], 2: [-g - 11], 3: [], 4: [2]}
|
|
+ {0: [0], 1: [1], 2: [g + 11], 3: [], 4: [2]}
|
|
|
|
::
|
|
|
|
diff --git a/src/sage/rings/number_field/class_group.py b/src/sage/rings/number_field/class_group.py
|
|
index 018ff5f5c6..73c0462cd1 100644
|
|
--- a/src/sage/rings/number_field/class_group.py
|
|
+++ b/src/sage/rings/number_field/class_group.py
|
|
@@ -221,11 +221,11 @@ class FractionalIdealClass(AbelianGroupWithValuesElement):
|
|
Class group of order 76 with structure C38 x C2
|
|
of Number Field in a with defining polynomial x^2 + 20072
|
|
sage: I = (G.0)^11; I
|
|
- Fractional ideal class (41, 1/2*a + 5)
|
|
+ Fractional ideal class (33, 1/2*a + 8)
|
|
sage: J = G(I.ideal()^5); J
|
|
- Fractional ideal class (115856201, 1/2*a + 40407883)
|
|
+ Fractional ideal class (39135393, 1/2*a + 13654253)
|
|
sage: J.reduce()
|
|
- Fractional ideal class (57, 1/2*a + 44)
|
|
+ Fractional ideal class (73, 1/2*a + 47)
|
|
sage: J == I^5
|
|
True
|
|
"""
|
|
diff --git a/src/sage/rings/number_field/galois_group.py b/src/sage/rings/number_field/galois_group.py
|
|
index 79acd053bb..e060148e4d 100644
|
|
--- a/src/sage/rings/number_field/galois_group.py
|
|
+++ b/src/sage/rings/number_field/galois_group.py
|
|
@@ -944,7 +944,7 @@ class GaloisGroup_v2(GaloisGroup_perm):
|
|
sage: K.<b> = NumberField(x^4 - 2*x^2 + 2, 'a').galois_closure()
|
|
sage: G = K.galois_group()
|
|
sage: [G.artin_symbol(P) for P in K.primes_above(7)]
|
|
- [(1,5)(2,6)(3,7)(4,8), (1,5)(2,6)(3,7)(4,8), (1,4)(2,3)(5,8)(6,7), (1,4)(2,3)(5,8)(6,7)]
|
|
+ [(1,4)(2,3)(5,8)(6,7), (1,4)(2,3)(5,8)(6,7), (1,5)(2,6)(3,7)(4,8), (1,5)(2,6)(3,7)(4,8)]
|
|
sage: G.artin_symbol(17)
|
|
Traceback (most recent call last):
|
|
...
|
|
diff --git a/src/sage/rings/number_field/number_field.py b/src/sage/rings/number_field/number_field.py
|
|
index 58463d570d..ff65634e99 100644
|
|
--- a/src/sage/rings/number_field/number_field.py
|
|
+++ b/src/sage/rings/number_field/number_field.py
|
|
@@ -3643,7 +3643,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
sage: L.<b> = K.extension(x^2 - 3, x^2 + 1)
|
|
sage: M.<c> = L.extension(x^2 + 1)
|
|
sage: L.ideal(K.ideal(2, a))
|
|
- Fractional ideal (-a)
|
|
+ Fractional ideal (a)
|
|
sage: M.ideal(K.ideal(2, a)) == M.ideal(a*(b - c)/2)
|
|
True
|
|
|
|
@@ -4227,7 +4227,8 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
(y^2 + 6, Mod(1/6*y, y^2 + 6), Mod(6*y, y^2 + 1/6))
|
|
"""
|
|
f = self.absolute_polynomial()._pari_with_name('y')
|
|
- if f.pollead() == f.content().denominator() == 1:
|
|
+ f = f * f.content().denominator()
|
|
+ if f.pollead() == 1:
|
|
g = f
|
|
alpha = beta = g.variable().Mod(g)
|
|
else:
|
|
@@ -4821,7 +4822,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
|
|
sage: K.<a> = NumberField(2*x^2 - 1/3)
|
|
sage: K._S_class_group_and_units(tuple(K.primes_above(2) + K.primes_above(3)))
|
|
- ([-6*a + 2, 6*a + 3, -1, 12*a + 5], [])
|
|
+ ([6*a + 2, 6*a + 3, -1, -12*a + 5], [])
|
|
"""
|
|
K_pari = self.pari_bnf(proof=proof)
|
|
S_pari = [p.pari_prime() for p in sorted(set(S))]
|
|
@@ -5166,7 +5167,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
|
|
sage: [K.ideal(g).factor() for g in gens]
|
|
[(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)),
|
|
- Fractional ideal (-a),
|
|
+ Fractional ideal (a),
|
|
(Fractional ideal (2, a + 1))^2,
|
|
1]
|
|
|
|
@@ -5751,7 +5752,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
sage: K.elements_of_norm(3)
|
|
[]
|
|
sage: K.elements_of_norm(50)
|
|
- [-7*a + 1, 5*a - 5, 7*a + 1]
|
|
+ [-a - 7, 5*a - 5, 7*a + 1]
|
|
|
|
TESTS:
|
|
|
|
@@ -5863,7 +5864,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
sage: K.factor(1+a)
|
|
Fractional ideal (a + 1)
|
|
sage: K.factor(1+a/5)
|
|
- (Fractional ideal (a + 1)) * (Fractional ideal (-a - 2))^-1 * (Fractional ideal (2*a + 1))^-1 * (Fractional ideal (-3*a - 2))
|
|
+ (Fractional ideal (a + 1)) * (Fractional ideal (-a - 2))^-1 * (Fractional ideal (2*a + 1))^-1 * (Fractional ideal (-2*a + 3))
|
|
|
|
An example over a relative number field::
|
|
|
|
@@ -6460,9 +6461,9 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
sage: new_basis = k.reduced_basis(prec=120)
|
|
sage: [c.minpoly() for c in new_basis]
|
|
[x - 1,
|
|
- x^2 - x + 1,
|
|
+ x^2 + x + 1,
|
|
+ x^6 + 3*x^5 - 102*x^4 - 103*x^3 + 10572*x^2 - 59919*x + 127657,
|
|
x^6 + 3*x^5 - 102*x^4 - 103*x^3 + 10572*x^2 - 59919*x + 127657,
|
|
- x^6 - 3*x^5 - 102*x^4 + 315*x^3 + 10254*x^2 - 80955*x + 198147,
|
|
x^3 - 171*x + 848,
|
|
x^6 + 171*x^4 + 1696*x^3 + 29241*x^2 + 145008*x + 719104]
|
|
sage: R = k.order(new_basis)
|
|
@@ -7058,7 +7059,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
-a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2,
|
|
-2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4,
|
|
a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2,
|
|
- -a^14 - a^13 + a^12 + 2*a^10 + a^8 - 2*a^7 - 2*a^6 + 2*a^3 - a^2 + 2*a - 2)
|
|
+ 2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 - 6*a^3 - 5*a^2 - 6*a - 7)
|
|
|
|
TESTS:
|
|
|
|
@@ -7067,7 +7068,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
|
|
sage: K.<a> = NumberField(1/2*x^2 - 1/6)
|
|
sage: K.units()
|
|
- (-3*a + 2,)
|
|
+ (3*a - 2,)
|
|
"""
|
|
proof = proof_flag(proof)
|
|
|
|
@@ -7146,7 +7147,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
sage: U.gens()
|
|
(u0, u1, u2, u3, u4, u5, u6, u7, u8)
|
|
sage: U.gens_values() # result not independently verified
|
|
- [-1, -a^9 - a + 1, -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 - 2*a^2 + 2*a - 1, 2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2, -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4, a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2, -a^14 - a^13 + a^12 + 2*a^10 + a^8 - 2*a^7 - 2*a^6 + 2*a^3 - a^2 + 2*a - 2]
|
|
+ [-1, -a^9 - a + 1, -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 - 2*a^2 + 2*a - 1, 2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2, -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4, a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2, 2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 - 6*a^3 - 5*a^2 - 6*a - 7]
|
|
"""
|
|
proof = proof_flag(proof)
|
|
|
|
diff --git a/src/sage/rings/number_field/number_field_element.pyx b/src/sage/rings/number_field/number_field_element.pyx
|
|
index 784c239dc1..aa740069dc 100644
|
|
--- a/src/sage/rings/number_field/number_field_element.pyx
|
|
+++ b/src/sage/rings/number_field/number_field_element.pyx
|
|
@@ -4446,7 +4446,7 @@ cdef class NumberFieldElement(FieldElement):
|
|
sage: f = Qi.embeddings(K)[0]
|
|
sage: a = f(2+3*i) * (2-zeta)^2
|
|
sage: a.descend_mod_power(Qi,2)
|
|
- [-3*i - 2, -2*i + 3]
|
|
+ [-2*i + 3, 3*i + 2]
|
|
|
|
An absolute example::
|
|
|
|
@@ -5124,7 +5124,7 @@ cdef class NumberFieldElement_relative(NumberFieldElement):
|
|
EXAMPLES::
|
|
|
|
sage: K.<a, b, c> = NumberField([x^2 - 2, x^2 - 3, x^2 - 5])
|
|
- sage: P = K.prime_factors(5)[0]
|
|
+ sage: P = K.prime_factors(5)[1]
|
|
sage: (2*a + b - c).valuation(P)
|
|
1
|
|
"""
|
|
diff --git a/src/sage/rings/number_field/number_field_ideal.py b/src/sage/rings/number_field/number_field_ideal.py
|
|
index 5f587556a4..33481fead0 100644
|
|
--- a/src/sage/rings/number_field/number_field_ideal.py
|
|
+++ b/src/sage/rings/number_field/number_field_ideal.py
|
|
@@ -3355,7 +3355,7 @@ def quotient_char_p(I, p):
|
|
[]
|
|
|
|
sage: I = K.factor(13)[0][0]; I
|
|
- Fractional ideal (-3*i - 2)
|
|
+ Fractional ideal (-2*i + 3)
|
|
sage: I.residue_class_degree()
|
|
1
|
|
sage: quotient_char_p(I, 13)[0]
|
|
diff --git a/src/sage/rings/number_field/number_field_ideal_rel.py b/src/sage/rings/number_field/number_field_ideal_rel.py
|
|
index bae36d4b9c..f64bd5b761 100644
|
|
--- a/src/sage/rings/number_field/number_field_ideal_rel.py
|
|
+++ b/src/sage/rings/number_field/number_field_ideal_rel.py
|
|
@@ -272,7 +272,7 @@ class NumberFieldFractionalIdeal_rel(NumberFieldFractionalIdeal):
|
|
sage: L.<b> = K.extension(5*x^2 + 1)
|
|
sage: P = L.primes_above(2)[0]
|
|
sage: P.gens_reduced()
|
|
- (2, 15*a*b + 3*a + 1)
|
|
+ (2, -15*a*b + 3*a + 1)
|
|
"""
|
|
try:
|
|
# Compute the single generator, if it exists
|
|
@@ -401,7 +401,7 @@ class NumberFieldFractionalIdeal_rel(NumberFieldFractionalIdeal):
|
|
sage: L.<b> = K.extension(5*x^2 + 1)
|
|
sage: P = L.primes_above(2)[0]
|
|
sage: P.relative_norm()
|
|
- Fractional ideal (-6*a + 2)
|
|
+ Fractional ideal (6*a + 2)
|
|
"""
|
|
L = self.number_field()
|
|
K = L.base_field()
|
|
@@ -518,7 +518,7 @@ class NumberFieldFractionalIdeal_rel(NumberFieldFractionalIdeal):
|
|
sage: L.<b> = K.extension(5*x^2 + 1)
|
|
sage: P = L.primes_above(2)[0]
|
|
sage: P.ideal_below()
|
|
- Fractional ideal (-6*a + 2)
|
|
+ Fractional ideal (6*a + 2)
|
|
"""
|
|
L = self.number_field()
|
|
K = L.base_field()
|
|
diff --git a/src/sage/rings/number_field/number_field_rel.py b/src/sage/rings/number_field/number_field_rel.py
|
|
index d33980c4b1..50e846b205 100644
|
|
--- a/src/sage/rings/number_field/number_field_rel.py
|
|
+++ b/src/sage/rings/number_field/number_field_rel.py
|
|
@@ -213,14 +213,14 @@ class NumberField_relative(NumberField_generic):
|
|
sage: l.<b> = k.extension(5*x^2 + 3); l
|
|
Number Field in b with defining polynomial 5*x^2 + 3 over its base field
|
|
sage: l.pari_rnf()
|
|
- [x^2 + (-1/2*y^2 + y - 3/2)*x + (-1/4*y^3 + 1/4*y^2 - 3/4*y - 13/4), ..., y^4 + 6*y^2 + 1, x^2 + (-1/2*y^2 + y - 3/2)*x + (-1/4*y^3 + 1/4*y^2 - 3/4*y - 13/4)], [0, 0]]
|
|
+ [x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4), ..., y^4 + 6*y^2 + 1, x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4)], [0, 0]]
|
|
sage: b
|
|
b
|
|
|
|
sage: l.<b> = k.extension(x^2 + 3/5); l
|
|
Number Field in b with defining polynomial x^2 + 3/5 over its base field
|
|
sage: l.pari_rnf()
|
|
- [x^2 + (-1/2*y^2 + y - 3/2)*x + (-1/4*y^3 + 1/4*y^2 - 3/4*y - 13/4), ..., y^4 + 6*y^2 + 1, x^2 + (-1/2*y^2 + y - 3/2)*x + (-1/4*y^3 + 1/4*y^2 - 3/4*y - 13/4)], [0, 0]]
|
|
+ [x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4), ..., y^4 + 6*y^2 + 1, x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4)], [0, 0]]
|
|
sage: b
|
|
b
|
|
|
|
diff --git a/src/sage/rings/number_field/order.py b/src/sage/rings/number_field/order.py
|
|
index 6eca89ed8d..78ef4c3b33 100644
|
|
--- a/src/sage/rings/number_field/order.py
|
|
+++ b/src/sage/rings/number_field/order.py
|
|
@@ -520,7 +520,7 @@ class Order(IntegralDomain, sage.rings.abc.Order):
|
|
sage: k.<a> = NumberField(x^2 + 5077); G = k.class_group(); G
|
|
Class group of order 22 with structure C22 of Number Field in a with defining polynomial x^2 + 5077
|
|
sage: G.0 ^ -9
|
|
- Fractional ideal class (11, a + 7)
|
|
+ Fractional ideal class (43, a + 13)
|
|
sage: Ok = k.maximal_order(); Ok
|
|
Maximal Order in Number Field in a with defining polynomial x^2 + 5077
|
|
sage: Ok * (11, a + 7)
|
|
diff --git a/src/sage/rings/number_field/selmer_group.py b/src/sage/rings/number_field/selmer_group.py
|
|
index c534aaa9f6..6bc67565d2 100644
|
|
--- a/src/sage/rings/number_field/selmer_group.py
|
|
+++ b/src/sage/rings/number_field/selmer_group.py
|
|
@@ -491,7 +491,7 @@ def pSelmerGroup(K, S, p, proof=None, debug=False):
|
|
|
|
sage: [K.ideal(g).factor() for g in gens]
|
|
[(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)),
|
|
- Fractional ideal (-a),
|
|
+ Fractional ideal (a),
|
|
(Fractional ideal (2, a + 1))^2,
|
|
1]
|
|
|
|
diff --git a/src/sage/rings/polynomial/polynomial_quotient_ring.py b/src/sage/rings/polynomial/polynomial_quotient_ring.py
|
|
index bb5d8356be..8a7e5fa66f 100644
|
|
--- a/src/sage/rings/polynomial/polynomial_quotient_ring.py
|
|
+++ b/src/sage/rings/polynomial/polynomial_quotient_ring.py
|
|
@@ -1791,7 +1791,7 @@ class PolynomialQuotientRing_generic(CommutativeRing):
|
|
sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1)], 3)
|
|
[2, a + 1]
|
|
sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1), K.ideal(a)], 3)
|
|
- [2, a + 1, a]
|
|
+ [2, a + 1, -a]
|
|
|
|
"""
|
|
fields, isos, iso_classes = self._S_decomposition(tuple(S))
|
|
diff --git a/src/sage/rings/qqbar.py b/src/sage/rings/qqbar.py
|
|
index 704b77ce5f..83ee4549e4 100644
|
|
--- a/src/sage/rings/qqbar.py
|
|
+++ b/src/sage/rings/qqbar.py
|
|
@@ -312,8 +312,8 @@ and we get a way to produce the number directly::
|
|
True
|
|
sage: sage_input(n)
|
|
R.<y> = QQ[]
|
|
- v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), RIF(RR(0.51763809020504148), RR(0.51763809020504159)))
|
|
- -109*v^3 - 89*v^2 + 327*v + 178
|
|
+ v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), RIF(-RR(1.9318516525781366), -RR(1.9318516525781364)))
|
|
+ -109*v^3 + 89*v^2 + 327*v - 178
|
|
|
|
We can also see that some computations (basically, those which are
|
|
easy to perform exactly) are performed directly, instead of storing
|
|
@@ -362,7 +362,7 @@ algorithms in :trac:`10255`::
|
|
# Verified
|
|
R1.<x> = QQbar[]
|
|
R2.<y> = QQ[]
|
|
- v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), RIF(RR(0.51763809020504148), RR(0.51763809020504159)))
|
|
+ v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), RIF(-RR(1.9318516525781366), -RR(1.9318516525781364)))
|
|
AA.polynomial_root(AA.common_polynomial(x^4 + QQbar(v^3 - 3*v - 1)*x^3 + QQbar(-v^3 + 3*v - 3)*x^2 + QQbar(-3*v^3 + 9*v + 3)*x + QQbar(3*v^3 - 9*v)), RIF(RR(0.99999999999999989), RR(1.0000000000000002)))
|
|
sage: one
|
|
1
|
|
@@ -2310,7 +2310,7 @@ def do_polred(poly, threshold=32):
|
|
cost = 2 * bitsize.nbits() + 5 * poly.degree().nbits()
|
|
if cost > threshold:
|
|
return parent.gen(), parent.gen(), poly
|
|
- new_poly, elt_back = poly.__pari__().polredbest(flag=1)
|
|
+ new_poly, elt_back = poly.numerator().__pari__().polredbest(flag=1)
|
|
elt_fwd = elt_back.modreverse()
|
|
return parent(elt_fwd.lift()), parent(elt_back.lift()), parent(new_poly)
|
|
|
|
@@ -2542,10 +2542,10 @@ def number_field_elements_from_algebraics(numbers, minimal=False, same_field=Fal
|
|
Defn: a |--> 1.414213562373095?)
|
|
|
|
sage: number_field_elements_from_algebraics((rt2,rt3))
|
|
- (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, [-a^3 + 3*a, -a^2 + 2], Ring morphism:
|
|
+ (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, [-a^3 + 3*a, a^2 - 2], Ring morphism:
|
|
From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1
|
|
To: Algebraic Real Field
|
|
- Defn: a |--> 0.5176380902050415?)
|
|
+ Defn: a |--> -1.931851652578137?)
|
|
|
|
``rt3a`` is a real number in ``QQbar``. Ordinarily, we'd get a homomorphism
|
|
to ``AA`` (because all elements are real), but if we specify ``same_field=True``,
|
|
@@ -2570,7 +2570,7 @@ def number_field_elements_from_algebraics(numbers, minimal=False, same_field=Fal
|
|
(Number Field in a with defining polynomial y^4 - 4*y^2 + 1, -a^3 + 3*a, Ring morphism:
|
|
From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1
|
|
To: Algebraic Real Field
|
|
- Defn: a |--> 0.5176380902050415?)
|
|
+ Defn: a |--> -1.931851652578137?)
|
|
|
|
We can specify ``minimal=True`` if we want the smallest number field::
|
|
|
|
@@ -2618,7 +2618,7 @@ def number_field_elements_from_algebraics(numbers, minimal=False, same_field=Fal
|
|
sage: nfI^2
|
|
-1
|
|
sage: sum = nfrt2 + nfrt3 + nfI + nfz3; sum
|
|
- 2*a^6 + a^5 - a^4 - a^3 - 2*a^2 - a
|
|
+ a^5 + a^4 - a^3 + 2*a^2 - a - 1
|
|
sage: hom(sum)
|
|
2.646264369941973? + 1.866025403784439?*I
|
|
sage: hom(sum) == rt2 + rt3 + qqI + z3
|
|
@@ -2658,7 +2658,7 @@ def number_field_elements_from_algebraics(numbers, minimal=False, same_field=Fal
|
|
sage: nf, nums, hom = number_field_elements_from_algebraics(elems, embedded=True)
|
|
sage: nf
|
|
Number Field in a with defining polynomial y^24 - 6*y^23 ...- 9*y^2 + 1
|
|
- with a = 0.2598678911433438? + 0.0572892247058457?*I
|
|
+ with a = 0.2598679? + 0.0572892?*I
|
|
sage: list(map(QQbar, nums)) == elems == list(map(hom, nums))
|
|
True
|
|
|
|
@@ -2725,7 +2725,7 @@ def number_field_elements_from_algebraics(numbers, minimal=False, same_field=Fal
|
|
sqrt(2), AA.polynomial_root(x^3-3, RIF(0,3)), 11/9, 1]
|
|
sage: res = number_field_elements_from_algebraics(my_nums, embedded=True)
|
|
sage: res[0]
|
|
- Number Field in a with defining polynomial y^24 - 107010*y^22 - 24*y^21 + ... + 250678447193040618624307096815048024318853254384 with a = -95.5053039433554?
|
|
+ Number Field in a with defining polynomial y^24 - 107010*y^22 - 24*y^21 + ... + 250678447193040618624307096815048024318853254384 with a = 93.32530798172420?
|
|
"""
|
|
gen = qq_generator
|
|
|
|
@@ -3129,7 +3129,7 @@ class AlgebraicGenerator(SageObject):
|
|
sage: root = ANRoot(x^2 - x - 1, RIF(1, 2))
|
|
sage: gen = AlgebraicGenerator(nf, root)
|
|
sage: gen.pari_field()
|
|
- [y^2 - y - 1, [2, 0], ...]
|
|
+ [[y^2 - y - 1, [2, 0], ...]
|
|
"""
|
|
if self.is_trivial():
|
|
raise ValueError("No PARI field attached to trivial generator")
|
|
@@ -3213,7 +3213,7 @@ class AlgebraicGenerator(SageObject):
|
|
sage: qq_generator.union(gen3) is gen3
|
|
True
|
|
sage: gen2.union(gen3)
|
|
- Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in 0.5176380902050415?
|
|
+ Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in -1.931851652578137?
|
|
"""
|
|
if self._trivial:
|
|
return other
|
|
@@ -3306,13 +3306,13 @@ class AlgebraicGenerator(SageObject):
|
|
Number Field in a with defining polynomial y^2 - 3 with a in 1.732050807568878?
|
|
sage: gen2_3 = gen2.union(gen3)
|
|
sage: gen2_3
|
|
- Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in 0.5176380902050415?
|
|
+ Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in -1.931851652578137?
|
|
sage: qq_generator.super_poly(gen2) is None
|
|
True
|
|
sage: gen2.super_poly(gen2_3)
|
|
-a^3 + 3*a
|
|
sage: gen3.super_poly(gen2_3)
|
|
- -a^2 + 2
|
|
+ a^2 - 2
|
|
|
|
"""
|
|
if checked is None:
|
|
@@ -3360,13 +3360,13 @@ class AlgebraicGenerator(SageObject):
|
|
sage: sqrt3 = ANExtensionElement(gen3, nf3.gen())
|
|
sage: gen2_3 = gen2.union(gen3)
|
|
sage: gen2_3
|
|
- Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in 0.5176380902050415?
|
|
+ Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in -1.931851652578137?
|
|
sage: gen2_3(sqrt2)
|
|
-a^3 + 3*a
|
|
sage: gen2_3(ANRational(1/7))
|
|
1/7
|
|
sage: gen2_3(sqrt3)
|
|
- -a^2 + 2
|
|
+ a^2 - 2
|
|
"""
|
|
if self._trivial:
|
|
return elt._value
|
|
@@ -4336,10 +4336,10 @@ class AlgebraicNumber_base(sage.structure.element.FieldElement):
|
|
sage: rt3 = AA(sqrt(3))
|
|
sage: rt3b = rt2 + rt3 - rt2
|
|
sage: rt3b.as_number_field_element()
|
|
- (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, -a^2 + 2, Ring morphism:
|
|
+ (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, a^2 - 2, Ring morphism:
|
|
From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1
|
|
To: Algebraic Real Field
|
|
- Defn: a |--> 0.5176380902050415?)
|
|
+ Defn: a |--> -1.931851652578137?)
|
|
sage: rt3b.as_number_field_element(minimal=True)
|
|
(Number Field in a with defining polynomial y^2 - 3, a, Ring morphism:
|
|
From: Number Field in a with defining polynomial y^2 - 3
|
|
@@ -4401,7 +4401,7 @@ class AlgebraicNumber_base(sage.structure.element.FieldElement):
|
|
sage: rt2b = rt3 + rt2 - rt3
|
|
sage: rt2b.exactify()
|
|
sage: rt2b._exact_value()
|
|
- a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137?
|
|
+ a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
|
|
sage: rt2b.simplify()
|
|
sage: rt2b._exact_value()
|
|
a where a^2 - 2 = 0 and a in 1.414213562373095?
|
|
@@ -4422,7 +4422,7 @@ class AlgebraicNumber_base(sage.structure.element.FieldElement):
|
|
sage: QQbar(2)._exact_field()
|
|
Trivial generator
|
|
sage: (sqrt(QQbar(2)) + sqrt(QQbar(19)))._exact_field()
|
|
- Number Field in a with defining polynomial y^4 - 20*y^2 + 81 with a in 2.375100220297941?
|
|
+ Number Field in a with defining polynomial y^4 - 20*y^2 + 81 with a in -3.789313782671036?
|
|
sage: (QQbar(7)^(3/5))._exact_field()
|
|
Number Field in a with defining polynomial y^5 - 2*y^4 - 18*y^3 + 38*y^2 + 82*y - 181 with a in 2.554256611698490?
|
|
"""
|
|
@@ -4442,7 +4442,7 @@ class AlgebraicNumber_base(sage.structure.element.FieldElement):
|
|
sage: QQbar(2)._exact_value()
|
|
2
|
|
sage: (sqrt(QQbar(2)) + sqrt(QQbar(19)))._exact_value()
|
|
- -1/9*a^3 - a^2 + 11/9*a + 10 where a^4 - 20*a^2 + 81 = 0 and a in 2.375100220297941?
|
|
+ -1/9*a^3 + a^2 + 11/9*a - 10 where a^4 - 20*a^2 + 81 = 0 and a in -3.789313782671036?
|
|
sage: (QQbar(7)^(3/5))._exact_value()
|
|
2*a^4 + 2*a^3 - 34*a^2 - 17*a + 150 where a^5 - 2*a^4 - 18*a^3 + 38*a^2 + 82*a - 181 = 0 and a in 2.554256611698490?
|
|
"""
|
|
@@ -6857,7 +6857,7 @@ class AlgebraicPolynomialTracker(SageObject):
|
|
sage: p = sqrt(AA(2)) * x^2 - sqrt(AA(3))
|
|
sage: cp = AA.common_polynomial(p)
|
|
sage: cp.generator()
|
|
- Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in 1.931851652578137?
|
|
+ Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in -0.5176380902050415?
|
|
"""
|
|
self.exactify()
|
|
return self._gen
|
|
@@ -7706,7 +7706,7 @@ class ANExtensionElement(ANDescr):
|
|
|
|
sage: rt2b.exactify()
|
|
sage: rt2b._descr
|
|
- a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137?
|
|
+ a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
|
|
sage: rt2b._descr.is_simple()
|
|
False
|
|
"""
|
|
@@ -7791,7 +7791,7 @@ class ANExtensionElement(ANDescr):
|
|
sage: rt2b = rt3 + rt2 - rt3
|
|
sage: rt2b.exactify()
|
|
sage: rt2b._descr
|
|
- a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137?
|
|
+ a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
|
|
sage: rt2b._descr.simplify(rt2b)
|
|
a where a^2 - 2 = 0 and a in 1.414213562373095?
|
|
"""
|
|
@@ -7830,9 +7830,9 @@ class ANExtensionElement(ANDescr):
|
|
sage: type(b)
|
|
<class 'sage.rings.qqbar.ANExtensionElement'>
|
|
sage: b.neg(a)
|
|
- 1/3*a^3 - 2/3*a^2 + 4/3*a - 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? - 1.573132184970987?*I
|
|
+ -1/3*a^3 + 1/3*a^2 - a - 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.724744871391589? + 1.573132184970987?*I
|
|
sage: b.neg("ham spam and eggs")
|
|
- 1/3*a^3 - 2/3*a^2 + 4/3*a - 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? - 1.573132184970987?*I
|
|
+ -1/3*a^3 + 1/3*a^2 - a - 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.724744871391589? + 1.573132184970987?*I
|
|
"""
|
|
return ANExtensionElement(self._generator, -self._value)
|
|
|
|
@@ -7848,9 +7848,9 @@ class ANExtensionElement(ANDescr):
|
|
sage: type(b)
|
|
<class 'sage.rings.qqbar.ANExtensionElement'>
|
|
sage: b.invert(a)
|
|
- 7/3*a^3 - 2/3*a^2 + 4/3*a - 12 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? - 1.573132184970987?*I
|
|
+ -7/3*a^3 + 19/3*a^2 - 7*a - 9 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.724744871391589? + 1.573132184970987?*I
|
|
sage: b.invert("ham spam and eggs")
|
|
- 7/3*a^3 - 2/3*a^2 + 4/3*a - 12 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? - 1.573132184970987?*I
|
|
+ -7/3*a^3 + 19/3*a^2 - 7*a - 9 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.724744871391589? + 1.573132184970987?*I
|
|
"""
|
|
return ANExtensionElement(self._generator, ~self._value)
|
|
|
|
@@ -7866,9 +7866,9 @@ class ANExtensionElement(ANDescr):
|
|
sage: type(b)
|
|
<class 'sage.rings.qqbar.ANExtensionElement'>
|
|
sage: b.conjugate(a)
|
|
- -1/3*a^3 + 2/3*a^2 - 4/3*a + 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? + 1.573132184970987?*I
|
|
+ 1/3*a^3 - 1/3*a^2 + a + 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.724744871391589? - 1.573132184970987?*I
|
|
sage: b.conjugate("ham spam and eggs")
|
|
- -1/3*a^3 + 2/3*a^2 - 4/3*a + 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 0 and a in -0.7247448713915890? + 1.573132184970987?*I
|
|
+ 1/3*a^3 - 1/3*a^2 + a + 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.724744871391589? - 1.573132184970987?*I
|
|
"""
|
|
if self._exactly_real:
|
|
return self
|
|
@@ -8501,7 +8501,7 @@ def an_binop_expr(a, b, op):
|
|
sage: x = an_binop_expr(a, b, operator.add); x
|
|
<sage.rings.qqbar.ANBinaryExpr object at ...>
|
|
sage: x.exactify()
|
|
- -6/7*a^7 + 2/7*a^6 + 71/7*a^5 - 26/7*a^4 - 125/7*a^3 + 72/7*a^2 + 43/7*a - 47/7 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in 3.12580...?
|
|
+ 6/7*a^7 - 2/7*a^6 - 71/7*a^5 + 26/7*a^4 + 125/7*a^3 - 72/7*a^2 - 43/7*a + 47/7 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in -0.3199179336182997?
|
|
|
|
sage: a = QQbar(sqrt(2)) + QQbar(sqrt(3))
|
|
sage: b = QQbar(sqrt(3)) + QQbar(sqrt(5))
|
|
@@ -8510,7 +8510,7 @@ def an_binop_expr(a, b, op):
|
|
sage: x = an_binop_expr(a, b, operator.mul); x
|
|
<sage.rings.qqbar.ANBinaryExpr object at ...>
|
|
sage: x.exactify()
|
|
- 2*a^7 - a^6 - 24*a^5 + 12*a^4 + 46*a^3 - 22*a^2 - 22*a + 9 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in 3.1258...?
|
|
+ 2*a^7 - a^6 - 24*a^5 + 12*a^4 + 46*a^3 - 22*a^2 - 22*a + 9 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in -0.3199179336182997?
|
|
"""
|
|
return ANBinaryExpr(a, b, op)
|
|
|
|
diff --git a/src/sage/schemes/affine/affine_morphism.py b/src/sage/schemes/affine/affine_morphism.py
|
|
index 1c4f2dff18..32c2e47e49 100644
|
|
--- a/src/sage/schemes/affine/affine_morphism.py
|
|
+++ b/src/sage/schemes/affine/affine_morphism.py
|
|
@@ -1148,9 +1148,9 @@ class SchemeMorphism_polynomial_affine_space_field(SchemeMorphism_polynomial_aff
|
|
sage: H = End(A)
|
|
sage: f = H([(QQbar(sqrt(2))*x^2 + 1/QQbar(sqrt(3))) / (5*x)])
|
|
sage: f.reduce_base_field()
|
|
- Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = 1.931851652578137?
|
|
+ Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = ...?
|
|
Defn: Defined on coordinates by sending (x) to
|
|
- (((a^3 - 3*a)*x^2 + (1/3*a^2 - 2/3))/(5*x))
|
|
+ (((a^3 - 3*a)*x^2 + (-1/3*a^2 + 2/3))/(5*x))
|
|
|
|
::
|
|
|
|
diff --git a/src/sage/schemes/elliptic_curves/ell_field.py b/src/sage/schemes/elliptic_curves/ell_field.py
|
|
index 68b8375dae..48f358ea6a 100644
|
|
--- a/src/sage/schemes/elliptic_curves/ell_field.py
|
|
+++ b/src/sage/schemes/elliptic_curves/ell_field.py
|
|
@@ -845,7 +845,7 @@ class EllipticCurve_field(ell_generic.EllipticCurve_generic, ProjectivePlaneCurv
|
|
sage: E = E.base_extend(G).quadratic_twist(c); E
|
|
Elliptic Curve defined by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^2+42000*a0+126000) over Number Field in a0 with defining polynomial x^3 - 3*x^2 + 3*x + 9
|
|
sage: K.<b> = E.division_field(3, simplify_all=True); K
|
|
- Number Field in b with defining polynomial x^12 - 10*x^10 + 55*x^8 - 60*x^6 + 75*x^4 + 1350*x^2 + 2025
|
|
+ Number Field in b with defining polynomial x^12 + 5*x^10 + 40*x^8 + 315*x^6 + 750*x^4 + 675*x^2 + 2025
|
|
|
|
Some higher-degree examples::
|
|
|
|
diff --git a/src/sage/schemes/elliptic_curves/ell_generic.py b/src/sage/schemes/elliptic_curves/ell_generic.py
|
|
index 926ae310ea..3bae819fb0 100644
|
|
--- a/src/sage/schemes/elliptic_curves/ell_generic.py
|
|
+++ b/src/sage/schemes/elliptic_curves/ell_generic.py
|
|
@@ -3324,8 +3324,8 @@ class EllipticCurve_generic(WithEqualityById, plane_curve.ProjectivePlaneCurve):
|
|
sage: K.<a> = QuadraticField(2)
|
|
sage: E = EllipticCurve([1,a])
|
|
sage: E.pari_curve()
|
|
- [Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(1, y^2 - 2),
|
|
- Mod(y, y^2 - 2), Mod(0, y^2 - 2), Mod(2, y^2 - 2), Mod(4*y, y^2 - 2),
|
|
+ [0, 0, 0, Mod(1, y^2 - 2),
|
|
+ Mod(y, y^2 - 2), 0, Mod(2, y^2 - 2), Mod(4*y, y^2 - 2),
|
|
Mod(-1, y^2 - 2), Mod(-48, y^2 - 2), Mod(-864*y, y^2 - 2),
|
|
Mod(-928, y^2 - 2), Mod(3456/29, y^2 - 2), Vecsmall([5]),
|
|
[[y^2 - 2, [2, 0], 8, 1, [[1, -1.41421356237310;
|
|
diff --git a/src/sage/schemes/elliptic_curves/ell_number_field.py b/src/sage/schemes/elliptic_curves/ell_number_field.py
|
|
index edbd196090..c44c803aa8 100644
|
|
--- a/src/sage/schemes/elliptic_curves/ell_number_field.py
|
|
+++ b/src/sage/schemes/elliptic_curves/ell_number_field.py
|
|
@@ -218,7 +218,7 @@ class EllipticCurve_number_field(EllipticCurve_field):
|
|
sage: E == loads(dumps(E))
|
|
True
|
|
sage: E.simon_two_descent()
|
|
- (2, 2, [(0 : 0 : 1)])
|
|
+ (2, 2, [(0 : 0 : 1), (1/18*a + 7/18 : -5/54*a - 17/54 : 1)])
|
|
sage: E.simon_two_descent(lim1=5, lim3=5, limtriv=10, maxprob=7, limbigprime=10)
|
|
(2, 2, [(-1 : 0 : 1), (-2 : -1/2*a - 1/2 : 1)])
|
|
|
|
@@ -274,7 +274,7 @@ class EllipticCurve_number_field(EllipticCurve_field):
|
|
sage: E.simon_two_descent() # long time (4s on sage.math, 2013)
|
|
(3,
|
|
3,
|
|
- [(5/8*zeta43_0^2 + 17/8*zeta43_0 - 9/4 : -27/16*zeta43_0^2 - 103/16*zeta43_0 + 39/8 : 1),
|
|
+ [(1/8*zeta43_0^2 - 3/8*zeta43_0 - 1/4 : -5/16*zeta43_0^2 + 7/16*zeta43_0 + 1/8 : 1),
|
|
(0 : 0 : 1)])
|
|
"""
|
|
verbose = int(verbose)
|
|
@@ -865,7 +865,7 @@ class EllipticCurve_number_field(EllipticCurve_field):
|
|
Conductor exponent: 1
|
|
Kodaira Symbol: I1
|
|
Tamagawa Number: 1,
|
|
- Local data at Fractional ideal (-3*i - 2):
|
|
+ Local data at Fractional ideal (-2*i + 3):
|
|
Reduction type: bad split multiplicative
|
|
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over Number Field in i with defining polynomial x^2 + 1
|
|
Minimal discriminant valuation: 2
|
|
@@ -2645,12 +2645,12 @@ class EllipticCurve_number_field(EllipticCurve_field):
|
|
[-92, -23, -23]
|
|
|
|
sage: C.matrix() # long time
|
|
- [1 2 2 4 2 4]
|
|
- [2 1 2 2 4 4]
|
|
- [2 2 1 4 4 2]
|
|
- [4 2 4 1 3 3]
|
|
- [2 4 4 3 1 3]
|
|
- [4 4 2 3 3 1]
|
|
+ [1 2 2 4 4 2]
|
|
+ [2 1 2 4 2 4]
|
|
+ [2 2 1 2 4 4]
|
|
+ [4 4 2 1 3 3]
|
|
+ [4 2 4 3 1 3]
|
|
+ [2 4 4 3 3 1]
|
|
|
|
The graph of this isogeny class has a shape which does not
|
|
occur over `\QQ`: a triangular prism. Note that for curves
|
|
@@ -2677,12 +2677,12 @@ class EllipticCurve_number_field(EllipticCurve_field):
|
|
|
|
sage: G = C.graph() # long time
|
|
sage: G.adjacency_matrix() # long time
|
|
- [0 1 1 0 1 0]
|
|
- [1 0 1 1 0 0]
|
|
- [1 1 0 0 0 1]
|
|
- [0 1 0 0 1 1]
|
|
- [1 0 0 1 0 1]
|
|
- [0 0 1 1 1 0]
|
|
+ [0 1 1 0 0 1]
|
|
+ [1 0 1 0 1 0]
|
|
+ [1 1 0 1 0 0]
|
|
+ [0 0 1 0 1 1]
|
|
+ [0 1 0 1 0 1]
|
|
+ [1 0 0 1 1 0]
|
|
|
|
To display the graph without any edge labels::
|
|
|
|
@@ -3316,7 +3316,7 @@ class EllipticCurve_number_field(EllipticCurve_field):
|
|
sage: points = [E.lift_x(x) for x in xi]
|
|
sage: newpoints, U = E.lll_reduce(points) # long time (35s on sage.math, 2011)
|
|
sage: [P[0] for P in newpoints] # long time
|
|
- [6823803569166584943, 5949539878899294213, 2005024558054813068, 5864879778877955778, 23955263915878682727/4, 5922188321411938518, 5286988283823825378, 175620639884534615751/25, -11451575907286171572, 3502708072571012181, 1500143935183238709184/225, 27180522378120223419/4, -5811874164190604461581/625, 26807786527159569093, 7404442636649562303, 475656155255883588, 265757454726766017891/49, 7272142121019825303, 50628679173833693415/4, 6951643522366348968, 6842515151518070703, 111593750389650846885/16, 2607467890531740394315/9, -1829928525835506297]
|
|
+ [6823803569166584943, 5949539878899294213, 2005024558054813068, 5864879778877955778, 23955263915878682727/4, 5922188321411938518, 5286988283823825378, 11465667352242779838, -11451575907286171572, 3502708072571012181, 1500143935183238709184/225, 27180522378120223419/4, -5811874164190604461581/625, 26807786527159569093, 7041412654828066743, 475656155255883588, 265757454726766017891/49, 7272142121019825303, 50628679173833693415/4, 6951643522366348968, 6842515151518070703, 111593750389650846885/16, 2607467890531740394315/9, -1829928525835506297]
|
|
|
|
An example to show the explicit use of the height pairing matrix::
|
|
|
|
diff --git a/src/sage/schemes/elliptic_curves/ell_rational_field.py b/src/sage/schemes/elliptic_curves/ell_rational_field.py
|
|
index 3808822812..a75290ea35 100644
|
|
--- a/src/sage/schemes/elliptic_curves/ell_rational_field.py
|
|
+++ b/src/sage/schemes/elliptic_curves/ell_rational_field.py
|
|
@@ -1827,7 +1827,7 @@ class EllipticCurve_rational_field(EllipticCurve_number_field):
|
|
sage: E = EllipticCurve('389a1')
|
|
sage: E._known_points = [] # clear cached points
|
|
sage: E.simon_two_descent()
|
|
- (2, 2, [(1 : 0 : 1), (-11/9 : 28/27 : 1)])
|
|
+ (2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])
|
|
sage: E = EllipticCurve('5077a1')
|
|
sage: E.simon_two_descent()
|
|
(3, 3, [(1 : 0 : 1), (2 : 0 : 1), (0 : 2 : 1)])
|
|
diff --git a/src/sage/schemes/elliptic_curves/gal_reps_number_field.py b/src/sage/schemes/elliptic_curves/gal_reps_number_field.py
|
|
index 81ad295160..d484a4a18b 100644
|
|
--- a/src/sage/schemes/elliptic_curves/gal_reps_number_field.py
|
|
+++ b/src/sage/schemes/elliptic_curves/gal_reps_number_field.py
|
|
@@ -780,12 +780,12 @@ def deg_one_primes_iter(K, principal_only=False):
|
|
[Fractional ideal (2, a + 1),
|
|
Fractional ideal (3, a + 1),
|
|
Fractional ideal (3, a + 2),
|
|
- Fractional ideal (-a),
|
|
+ Fractional ideal (a),
|
|
Fractional ideal (7, a + 3),
|
|
Fractional ideal (7, a + 4)]
|
|
sage: it = deg_one_primes_iter(K, True)
|
|
sage: [next(it) for _ in range(6)]
|
|
- [Fractional ideal (-a),
|
|
+ [Fractional ideal (a),
|
|
Fractional ideal (-2*a + 3),
|
|
Fractional ideal (2*a + 3),
|
|
Fractional ideal (a + 6),
|
|
diff --git a/src/sage/schemes/elliptic_curves/gp_simon.py b/src/sage/schemes/elliptic_curves/gp_simon.py
|
|
index 28b97f34af..9f7d1b6020 100644
|
|
--- a/src/sage/schemes/elliptic_curves/gp_simon.py
|
|
+++ b/src/sage/schemes/elliptic_curves/gp_simon.py
|
|
@@ -56,7 +56,7 @@ def simon_two_descent(E, verbose=0, lim1=None, lim3=None, limtriv=None,
|
|
sage: import sage.schemes.elliptic_curves.gp_simon
|
|
sage: E=EllipticCurve('389a1')
|
|
sage: sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E)
|
|
- (2, 2, [(1 : 0 : 1), (-11/9 : 28/27 : 1)])
|
|
+ (2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])
|
|
|
|
TESTS::
|
|
|
|
@@ -117,7 +117,7 @@ def simon_two_descent(E, verbose=0, lim1=None, lim3=None, limtriv=None,
|
|
# The block below mimics the defaults in Simon's scripts, and needs to be changed
|
|
# when these are updated.
|
|
if K is QQ:
|
|
- cmd = 'ellrank(%s, %s);' % (list(E.ainvs()), [P.__pari__() for P in known_points])
|
|
+ cmd = 'ellQ_ellrank(%s, %s);' % (list(E.ainvs()), [P.__pari__() for P in known_points])
|
|
if lim1 is None:
|
|
lim1 = 5
|
|
if lim3 is None:
|
|
@@ -144,7 +144,7 @@ def simon_two_descent(E, verbose=0, lim1=None, lim3=None, limtriv=None,
|
|
if verbose > 0:
|
|
print(s)
|
|
v = gp.eval('ans')
|
|
- if v=='ans': # then the call to ellrank() or bnfellrank() failed
|
|
+ if v=='ans': # then the call to ellQ_ellrank() or bnfellrank() failed
|
|
raise RuntimeError("An error occurred while running Simon's 2-descent program")
|
|
if verbose >= 2:
|
|
print("v = %s" % v)
|
|
diff --git a/src/sage/schemes/elliptic_curves/isogeny_small_degree.py b/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
|
|
index a936deb74f..dc19254d8c 100644
|
|
--- a/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
|
|
+++ b/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
|
|
@@ -1208,14 +1208,14 @@ def isogenies_13_0(E, minimal_models=True):
|
|
sage: [phi.codomain().ainvs() for phi in isogenies_13_0(E)] # long time (4s)
|
|
[(0,
|
|
0,
|
|
- 20360599/165164973653422080*a^11 - 3643073/41291243413355520*a^10 - 101/8789110986240*a^9 + 5557619461/573489491852160*a^8 - 82824971/11947697746920*a^7 - 19487/21127670640*a^6 - 475752603733/29409717530880*a^5 + 87205112531/7352429382720*a^4 + 8349/521670880*a^3 + 5858744881/12764634345*a^2 - 1858703809/2836585410*a + 58759402/48906645,
|
|
+ 20360599/165164973653422080*a^11 - 3643073/41291243413355520*a^10 + 1887439/1146978983704320*a^9 + 5557619461/573489491852160*a^8 - 82824971/11947697746920*a^7 + 1030632647/7965131831280*a^6 - 475752603733/29409717530880*a^5 + 87205112531/7352429382720*a^4 - 43618899433/204234149520*a^3 + 5858744881/12764634345*a^2 - 1858703809/2836585410*a + 2535050171/1418292705,
|
|
-139861295/2650795873449984*a^11 - 3455957/5664093746688*a^10 - 345310571/50976843720192*a^9 - 500530795/118001953056*a^8 - 12860048113/265504394376*a^7 - 25007420461/44250732396*a^6 + 458134176455/1416023436672*a^5 + 16701880631/9077073312*a^4 + 155941666417/9077073312*a^3 + 3499310115/378211388*a^2 - 736774863/94552847*a - 21954102381/94552847,
|
|
- 579363345221/13763747804451840*a^11 + 371192377511/860234237778240*a^10 + 8855090365657/1146978983704320*a^9 + 5367261541663/1633873196160*a^8 + 614883554332193/15930263662560*a^7 + 30485197378483/68078049840*a^6 - 131000897588387/2450809794240*a^5 - 203628705777949/306351224280*a^4 - 1587619388190379/204234149520*a^3 + 14435069706551/11346341640*a^2 + 7537273048614/472764235*a + 89198980034806/472764235),
|
|
+ 8342795944891/198197968384106496*a^11 + 8908625263589/20645621706677760*a^10 + 53130542636623/6881873902225920*a^9 + 376780111042213/114697898370432*a^8 + 614884052146333/15930263662560*a^7 + 3566768133324359/7965131831280*a^6 - 1885593809102545/35291661037056*a^5 - 2443732172026523/3676214691360*a^4 - 9525729503937541/1225404897120*a^3 + 51990274442321/40846829904*a^2 + 67834019370596/4254878115*a + 267603083706812/1418292705),
|
|
(0,
|
|
0,
|
|
- 20360599/165164973653422080*a^11 - 3643073/41291243413355520*a^10 - 101/8789110986240*a^9 + 5557619461/573489491852160*a^8 - 82824971/11947697746920*a^7 - 19487/21127670640*a^6 - 475752603733/29409717530880*a^5 + 87205112531/7352429382720*a^4 + 8349/521670880*a^3 + 5858744881/12764634345*a^2 - 1858703809/2836585410*a + 58759402/48906645,
|
|
+ 20360599/165164973653422080*a^11 - 3643073/41291243413355520*a^10 + 1887439/1146978983704320*a^9 + 5557619461/573489491852160*a^8 - 82824971/11947697746920*a^7 + 1030632647/7965131831280*a^6 - 475752603733/29409717530880*a^5 + 87205112531/7352429382720*a^4 - 43618899433/204234149520*a^3 + 5858744881/12764634345*a^2 - 1858703809/2836585410*a + 2535050171/1418292705,
|
|
-6465569317/1325397936724992*a^11 - 112132307/1960647835392*a^10 - 17075412917/25488421860096*a^9 - 207832519229/531008788752*a^8 - 1218275067617/265504394376*a^7 - 9513766502551/177002929584*a^6 + 4297077855437/708011718336*a^5 + 354485975837/4538536656*a^4 + 4199379308059/4538536656*a^3 - 30841577919/189105694*a^2 - 181916484042/94552847*a - 2135779171614/94552847,
|
|
- -132601797212627/3440936951112960*a^11 - 6212467020502021/13763747804451840*a^10 - 1515926454902497/286744745926080*a^9 - 15154913741799637/4901619588480*a^8 - 576888119803859263/15930263662560*a^7 - 86626751639648671/204234149520*a^6 + 16436657569218427/306351224280*a^5 + 1540027900265659087/2450809794240*a^4 + 375782662805915809/51058537380*a^3 - 14831920924677883/11346341640*a^2 - 7237947774817724/472764235*a - 84773764066089509/472764235)]
|
|
+ -1316873026840277/34172063514501120*a^11 - 18637401045099413/41291243413355520*a^10 - 36382234917217247/6881873902225920*a^9 - 61142238484016213/19775499719040*a^8 - 576888119306045123/15930263662560*a^7 - 3378443313906256321/7965131831280*a^6 + 326466167429333279/6084769144320*a^5 + 4620083325391594991/7352429382720*a^4 + 9018783894167184149/1225404897120*a^3 - 9206015742300283/7042556880*a^2 - 65141531411426446/4254878115*a - 254321286054666133/1418292705)]
|
|
"""
|
|
if E.j_invariant()!=0:
|
|
raise ValueError("j-invariant must be 0.")
|