Add .clang-format

This commit is contained in:
Utkarsh Verma 2022-08-27 09:27:26 +02:00
parent 098184d0c3
commit 647080cbed
No known key found for this signature in database
GPG Key ID: 817656CF818EFCCC
2 changed files with 183 additions and 190 deletions

2
.clang-format Normal file
View File

@ -0,0 +1,2 @@
BasedOnStyle: Google
IndentWidth: 4

371
main.c
View File

@ -12,12 +12,12 @@
#define LEN(arr) (sizeof(arr) / sizeof(arr[0]))
#define MAX(a, b) (a > b ? a : b)
#define BLOCK(cmd, interval, signal) \
{ "echo \"$(" cmd ")\"", interval, signal }
{ "echo \"$(" cmd ")\"", interval, signal }
typedef const struct {
const char* command;
const unsigned int interval;
const unsigned int signal;
const char *command;
const unsigned int interval;
const unsigned int signal;
} Block;
#include "config.h"
@ -35,7 +35,7 @@ typedef const struct {
#define LEADING_DELIMITER 0
#endif
static Display* dpy;
static Display *dpy;
static int screen;
static Window root;
static unsigned short statusContinue = 1;
@ -48,265 +48,256 @@ static int execLock = 0;
// Longest UTF-8 character is 4 bytes long
static char outputs[LEN(blocks)][CMDLENGTH * 4 + 1 + CLICKABLE_BLOCKS];
static char statusBar[2][LEN(blocks) * (LEN(outputs[0]) - 1) + (LEN(blocks) - 1 + LEADING_DELIMITER) * (LEN(DELIMITER) - 1) + 1];
static char
statusBar[2]
[LEN(blocks) * (LEN(outputs[0]) - 1) +
(LEN(blocks) - 1 + LEADING_DELIMITER) * (LEN(DELIMITER) - 1) + 1];
void (*writeStatus)();
int gcd(int a, int b) {
int temp;
while (b > 0) {
temp = a % b;
a = b;
b = temp;
}
return a;
int temp;
while (b > 0) {
temp = a % b;
a = b;
b = temp;
}
return a;
}
void closePipe(int* pipe) {
close(pipe[0]);
close(pipe[1]);
void closePipe(int *pipe) {
close(pipe[0]);
close(pipe[1]);
}
void execBlock(int i, const char* button) {
// Ensure only one child process exists per block at an instance
if (execLock & 1 << i)
return;
// Lock execution of block until current instance finishes execution
execLock |= 1 << i;
void execBlock(int i, const char *button) {
// Ensure only one child process exists per block at an instance
if (execLock & 1 << i) return;
// Lock execution of block until current instance finishes execution
execLock |= 1 << i;
if (fork() == 0) {
close(pipes[i][0]);
dup2(pipes[i][1], STDOUT_FILENO);
close(pipes[i][1]);
if (fork() == 0) {
close(pipes[i][0]);
dup2(pipes[i][1], STDOUT_FILENO);
close(pipes[i][1]);
if (button)
setenv("BLOCK_BUTTON", button, 1);
execl("/bin/sh", "sh", "-c", blocks[i].command, (char*)NULL);
exit(EXIT_FAILURE);
}
if (button) setenv("BLOCK_BUTTON", button, 1);
execl("/bin/sh", "sh", "-c", blocks[i].command, (char *)NULL);
exit(EXIT_FAILURE);
}
}
void execBlocks(unsigned int time) {
for (int i = 0; i < LEN(blocks); i++)
if (time == 0 || (blocks[i].interval != 0 && time % blocks[i].interval == 0))
execBlock(i, NULL);
for (int i = 0; i < LEN(blocks); i++)
if (time == 0 ||
(blocks[i].interval != 0 && time % blocks[i].interval == 0))
execBlock(i, NULL);
}
int getStatus(char* new, char* old) {
strcpy(old, new);
new[0] = '\0';
int getStatus(char *new, char *old) {
strcpy(old, new);
new[0] = '\0';
for (int i = 0; i < LEN(blocks); i++) {
for (int i = 0; i < LEN(blocks); i++) {
#if LEADING_DELIMITER
if (strlen(outputs[i]))
if (strlen(outputs[i]))
#else
if (strlen(new) && strlen(outputs[i]))
if (strlen(new) && strlen(outputs[i]))
#endif
strcat(new, DELIMITER);
strcat(new, outputs[i]);
}
return strcmp(new, old);
strcat(new, DELIMITER);
strcat(new, outputs[i]);
}
return strcmp(new, old);
}
void updateBlock(int i) {
char* output = outputs[i];
char buffer[LEN(outputs[0]) - CLICKABLE_BLOCKS];
int bytesRead = read(pipes[i][0], buffer, LEN(buffer));
char *output = outputs[i];
char buffer[LEN(outputs[0]) - CLICKABLE_BLOCKS];
int bytesRead = read(pipes[i][0], buffer, LEN(buffer));
// Trim UTF-8 string to desired length
int count = 0, j = 0;
while (buffer[j] != '\n' && count < CMDLENGTH) {
count++;
// Trim UTF-8 string to desired length
int count = 0, j = 0;
while (buffer[j] != '\n' && count < CMDLENGTH) {
count++;
// Skip continuation bytes, if any
char ch = buffer[j];
int skip = 1;
while ((ch & 0xc0) > 0x80)
ch <<= 1, skip++;
j += skip;
}
// Skip continuation bytes, if any
char ch = buffer[j];
int skip = 1;
while ((ch & 0xc0) > 0x80) ch <<= 1, skip++;
j += skip;
}
// Cache last character and replace it with a trailing space
char ch = buffer[j];
buffer[j] = ' ';
// Cache last character and replace it with a trailing space
char ch = buffer[j];
buffer[j] = ' ';
// Trim trailing spaces
while (j >= 0 && buffer[j] == ' ')
j--;
buffer[j + 1] = 0;
// Trim trailing spaces
while (j >= 0 && buffer[j] == ' ') j--;
buffer[j + 1] = 0;
// Clear the pipe
if (bytesRead == LEN(buffer)) {
while (ch != '\n' && read(pipes[i][0], &ch, 1) == 1)
;
}
// Clear the pipe
if (bytesRead == LEN(buffer)) {
while (ch != '\n' && read(pipes[i][0], &ch, 1) == 1)
;
}
#if CLICKABLE_BLOCKS
if (bytesRead > 1 && blocks[i].signal > 0) {
output[0] = blocks[i].signal;
output++;
}
if (bytesRead > 1 && blocks[i].signal > 0) {
output[0] = blocks[i].signal;
output++;
}
#endif
strcpy(output, buffer);
strcpy(output, buffer);
// Remove execution lock for the current block
execLock &= ~(1 << i);
// Remove execution lock for the current block
execLock &= ~(1 << i);
}
void debug() {
// Only write out if text has changed
if (!getStatus(statusBar[0], statusBar[1]))
return;
// Only write out if text has changed
if (!getStatus(statusBar[0], statusBar[1])) return;
write(STDOUT_FILENO, statusBar[0], strlen(statusBar[0]));
write(STDOUT_FILENO, "\n", 1);
write(STDOUT_FILENO, statusBar[0], strlen(statusBar[0]));
write(STDOUT_FILENO, "\n", 1);
}
int setupX() {
dpy = XOpenDisplay(NULL);
if (!dpy)
return 1;
dpy = XOpenDisplay(NULL);
if (!dpy) return 1;
screen = DefaultScreen(dpy);
root = RootWindow(dpy, screen);
return 0;
screen = DefaultScreen(dpy);
root = RootWindow(dpy, screen);
return 0;
}
void setRoot() {
// Only set root if text has changed
if (!getStatus(statusBar[0], statusBar[1]))
return;
// Only set root if text has changed
if (!getStatus(statusBar[0], statusBar[1])) return;
XStoreName(dpy, root, statusBar[0]);
XFlush(dpy);
XStoreName(dpy, root, statusBar[0]);
XFlush(dpy);
}
void signalHandler() {
struct signalfd_siginfo info;
read(signalFD, &info, sizeof(info));
unsigned int signal = info.ssi_signo;
struct signalfd_siginfo info;
read(signalFD, &info, sizeof(info));
unsigned int signal = info.ssi_signo;
switch (signal) {
case SIGALRM:
// Schedule the next timer event and execute blocks
alarm(timerTick);
execBlocks(timer);
switch (signal) {
case SIGALRM:
// Schedule the next timer event and execute blocks
alarm(timerTick);
execBlocks(timer);
// Wrap `timer` to the interval [1, `maxInterval`]
timer = (timer + timerTick - 1) % maxInterval + 1;
return;
case SIGUSR1:
// Update all blocks on receiving SIGUSR1
execBlocks(0);
return;
}
// Wrap `timer` to the interval [1, `maxInterval`]
timer = (timer + timerTick - 1) % maxInterval + 1;
return;
case SIGUSR1:
// Update all blocks on receiving SIGUSR1
execBlocks(0);
return;
}
for (int j = 0; j < LEN(blocks); j++) {
if (blocks[j].signal == signal - SIGRTMIN) {
char button[] = {'0' + info.ssi_int & 0xff, 0};
execBlock(j, button);
break;
}
}
for (int j = 0; j < LEN(blocks); j++) {
if (blocks[j].signal == signal - SIGRTMIN) {
char button[] = {'0' + info.ssi_int & 0xff, 0};
execBlock(j, button);
break;
}
}
}
void termHandler() {
statusContinue = 0;
}
void termHandler() { statusContinue = 0; }
void setupSignals() {
sigset_t handledSignals;
sigemptyset(&handledSignals);
sigaddset(&handledSignals, SIGUSR1);
sigaddset(&handledSignals, SIGALRM);
sigset_t handledSignals;
sigemptyset(&handledSignals);
sigaddset(&handledSignals, SIGUSR1);
sigaddset(&handledSignals, SIGALRM);
// Append all block signals to `handledSignals`
for (int i = 0; i < LEN(blocks); i++)
if (blocks[i].signal > 0)
sigaddset(&handledSignals, SIGRTMIN + blocks[i].signal);
// Append all block signals to `handledSignals`
for (int i = 0; i < LEN(blocks); i++)
if (blocks[i].signal > 0)
sigaddset(&handledSignals, SIGRTMIN + blocks[i].signal);
// Create a signal file descriptor for epoll to watch
signalFD = signalfd(-1, &handledSignals, 0);
event.data.u32 = LEN(blocks);
epoll_ctl(epollFD, EPOLL_CTL_ADD, signalFD, &event);
// Create a signal file descriptor for epoll to watch
signalFD = signalfd(-1, &handledSignals, 0);
event.data.u32 = LEN(blocks);
epoll_ctl(epollFD, EPOLL_CTL_ADD, signalFD, &event);
// Block all realtime and handled signals
for (int i = SIGRTMIN; i <= SIGRTMAX; i++)
sigaddset(&handledSignals, i);
sigprocmask(SIG_BLOCK, &handledSignals, NULL);
// Block all realtime and handled signals
for (int i = SIGRTMIN; i <= SIGRTMAX; i++) sigaddset(&handledSignals, i);
sigprocmask(SIG_BLOCK, &handledSignals, NULL);
// Handle termination signals
signal(SIGINT, termHandler);
signal(SIGTERM, termHandler);
// Handle termination signals
signal(SIGINT, termHandler);
signal(SIGTERM, termHandler);
// Avoid zombie subprocesses
struct sigaction sa;
sa.sa_handler = SIG_DFL;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_NOCLDWAIT;
sigaction(SIGCHLD, &sa, 0);
// Avoid zombie subprocesses
struct sigaction sa;
sa.sa_handler = SIG_DFL;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_NOCLDWAIT;
sigaction(SIGCHLD, &sa, 0);
}
void statusLoop() {
// Update all blocks initially
raise(SIGALRM);
// Update all blocks initially
raise(SIGALRM);
struct epoll_event events[LEN(blocks) + 1];
while (statusContinue) {
int eventCount = epoll_wait(epollFD, events, LEN(events), -1);
for (int i = 0; i < eventCount; i++) {
unsigned short id = events[i].data.u32;
if (id < LEN(blocks))
updateBlock(id);
else
signalHandler();
}
struct epoll_event events[LEN(blocks) + 1];
while (statusContinue) {
int eventCount = epoll_wait(epollFD, events, LEN(events), -1);
for (int i = 0; i < eventCount; i++) {
unsigned short id = events[i].data.u32;
if (id < LEN(blocks))
updateBlock(id);
else
signalHandler();
}
if (eventCount != -1)
writeStatus();
}
if (eventCount != -1) writeStatus();
}
}
void init() {
epollFD = epoll_create(LEN(blocks));
event.events = EPOLLIN;
epollFD = epoll_create(LEN(blocks));
event.events = EPOLLIN;
for (int i = 0; i < LEN(blocks); i++) {
// Append each block's pipe to `epollFD`
pipe(pipes[i]);
event.data.u32 = i;
epoll_ctl(epollFD, EPOLL_CTL_ADD, pipes[i][0], &event);
for (int i = 0; i < LEN(blocks); i++) {
// Append each block's pipe to `epollFD`
pipe(pipes[i]);
event.data.u32 = i;
epoll_ctl(epollFD, EPOLL_CTL_ADD, pipes[i][0], &event);
// Calculate the max interval and tick size for the timer
if (blocks[i].interval) {
maxInterval = MAX(blocks[i].interval, maxInterval);
timerTick = gcd(blocks[i].interval, timerTick);
}
}
// Calculate the max interval and tick size for the timer
if (blocks[i].interval) {
maxInterval = MAX(blocks[i].interval, maxInterval);
timerTick = gcd(blocks[i].interval, timerTick);
}
}
setupSignals();
setupSignals();
}
int main(const int argc, const char* argv[]) {
if (setupX()) {
fprintf(stderr, "dwmblocks: Failed to open display\n");
return 1;
}
int main(const int argc, const char *argv[]) {
if (setupX()) {
fprintf(stderr, "dwmblocks: Failed to open display\n");
return 1;
}
writeStatus = setRoot;
for (int i = 0; i < argc; i++)
if (!strcmp("-d", argv[i]))
writeStatus = debug;
writeStatus = setRoot;
for (int i = 0; i < argc; i++)
if (!strcmp("-d", argv[i])) writeStatus = debug;
init();
statusLoop();
init();
statusLoop();
XCloseDisplay(dpy);
close(epollFD);
close(signalFD);
for (int i = 0; i < LEN(pipes); i++)
closePipe(pipes[i]);
XCloseDisplay(dpy);
close(epollFD);
close(signalFD);
for (int i = 0; i < LEN(pipes); i++) closePipe(pipes[i]);
return 0;
return 0;
}